Что такое коэффициент увлажнения и как он определяется? Исследование показателей, оценивающих испаряемость горючего Коэффициент испаряемости рассчитывают по формуле.




Испаряемость

Количество осадков еще не дает полного представления об обеспеченности территории влагой, так как часть атмосферных осадков испаряется с поверхности, а другая часть просачивается в почву.При различных температурах с поверхности испаряется различное количество влаги. Количество влаги, которое может испаряться с водной поверхности при данной температуре, называется испаряемостью. Она измеряется в миллиметрах слоя испарившейся воды. Испаряемость характеризует возможное испарение. Фактическое же испарение не может быть больше годовой суммы осадков. Поэтому в пустынях Средней Азии оно составляет не более 150-200 мм в год, хотя испаряемость здесь в 6-12 раз выше. К северу испарение возрастает, достигая 450 мм в южной части тайги Западной Сибири и 500-550 мм в смешанных и широколиственных лесах Русской равнины. Далее к северу от этой полосы испарение вновь уменьшается до 100-150 мм в прибрежных тундрах. В северной части страны испарение ограничивается не количеством осадков, как в пустынях, а величиной испаряемости.

Коэффициент увлажнения

Для характеристики обеспеченности территории влагой используется коэффициент увлажнения -- отношение годовой суммы осадков к испаряемости за этот же период.

Чем меньше коэффициент увлажнения, тем суше климат. Близ северной границы лесостепной зоны количество осадков примерно равно годовой испаряемости. Коэффициент увлажнения здесь близок к единице. Такое увлажнение считается достаточным. Увлажнение лесостепной зоны и южной части зоны смешанных лесов колеблется от года к году в сторону то увеличения, то понижения, поэтому оно неустойчивое. При коэффициенте увлажнения меньше единицы увлажнение считается недостаточным (степная зона). В северной части страны (тайга, тундра) количество осадков превышает испаряемость. Коэффициент увлажнения здесь больше единицы. Такое увлажнение называют избыточным.

Коэффициент увлажнения выражает соотношение тепла и влаги на той или иной территории и является одним из важных климатических показателей, так как определяет направление и интенсивность большинства природных процессов.

В районах избыточного увлажнения много рек, озер, болот. В преобразовании рельефа преобладает эрозия. Широко распространены луга и леса.

Высокие годовые значения коэффициента увлажнения (1,75-2,4) характерны для горных территорий с абсолютными отметками поверхности 800-1200 м. Эти и другие, более высокогорные, районы находятся в условиях избыточного увлажнения с положительным балансом влаги, избыток которой составляет 100 - 500 мм в год и более. Минимальные значения коэффициента увлажнения от 0,35 до 0,6 свойственны степной зоне, подавляющая часть поверхности которой расположена на отметках менее 600 м абс. высоты. Баланс влаги здесь отрицателен и характеризуется дефицитом от 200 до 450 мм и более, а территория, в целом - недостаточным увлажнением, типичным для полуаридного и даже аридного климата. Основной период испарения влаги длится с марта по октябрь, а ее максимальная интенсивность приходится на наиболее жаркие месяцы (июнь -- август). Наименьшие значения коэффициента увлажнения наблюдаются именно в эти месяцы. Нетрудно заметить, что величина избыточного увлажнения горных территорий сопоставима, а в некоторых случаях и превышает суммарное количество атмосферных осадков степной зоны.

Коэффициент увлажнения Высоцкого -- Иванова

Коэффициент увлажнения -- соотношение между количеством выпадающих атмосферных осадков за год или другое время и испаряемостью определенной территории. Коэффициент увлажнения является показателем соотношением тепла и влаги. Впервые способ характеристики климата как фактора водного режима почв был введен в практику почвоведения Г. Н. Высоцким. Им было введено понятие о коэффициенте увлажнения территории (К) как о величине, показывающей отношение суммы осадков (Q, мм) к испаряемости (V, мм) за тот же период (К=Q/V). По его подсчетам эта величина для лесной зоны равна 1,38, для лесостепной-- 1,0, для степной черноземной-0,67 и для зоны сухих степей -- 0,3.

В дальнейшем понятие о коэффициенте увлажнения было детально разработано Б. Г. Ивановым (1948) для каждой почвенно-географической зоны, а коэффициент стал называться коэффициентом Высоцкого -- Иванова (КУ).

По обеспеченности суши водой и особенностям почвообразования на земном шаре можно выделить следующие области (Будыко, 1968)(табл.2)

Таблица 2

Климатические области

В соответствии с поступлением влаги и ее дальнейшим перераспределением каждый природный регион характеризуется показателем радиационного индекса сухости

где Я-- радиационный баланс, кДж/(см 2 *год); r -- количество осадков в год, мм; a -- скрытая теплота фазовых преобразований воды, Дж/г.

Количество осадков еще не дает полного представления об обеспеченности территории влагой, так как часть испаряется с поверхности, а другая часть просачивается в .

При различных температурах с поверхности испаряется различное количество влаги. Количество влаги, которое может испаряться с водной поверхности при данной температуре, называется испаряемостью. Она измеряется в миллиметрах слоя испарившейся воды. Испаряемость характеризует возможное испарение. Фактическое же испарение не может быть больше годовой суммы осадков. Поэтому в Средней Азии оно составляет не более 150-200 мм в год, хотя испаряемость здесь в 6-12 раз выше. К северу испарение возрастает, достигая 450 мм в южной части и 500-550 мм Русской . Далее к северу от этой полосы испарение вновь уменьшается до 100-150 мм в прибрежных . В северной части страны испарение ограничивается не количеством осадков, как в пустынях, а величиной испаряемости.

Для характеристики обеспеченности территории влагой используется коэффициент увлажнения - отношение годовой суммы осадков к испаряемости за этот же период:k=O/U

Чем меньше коэффициент увлажнения, тем суше .

Близ северной границы количество осадков примерно равно годовой испаряемости. Коэффициент увлажнения здесь близок к единице. Такое увлажнение считается достаточным. Увлажнение лесостепной зоны и южной части зоны колеблется от года к году в сторону то увеличения, то понижения, поэтому оно неустойчивое. При коэффициенте увлажнения меньше единицы увлажнение считается недостаточным ( зона). В северной части страны (тайга, тундра) количество осадков превышает испаряемость. Коэффициент увлажнения здесь больше единицы. Такое увлажнение называют избыточным.

В его основе - два взаимосвязанных процесса: увлажнение земной поверхности осадками и испарение из нее влаги в атмосферу. Оба эти процесса как раз и определяют коэффициент увлажнения для конкретной территории. Что такое коэффициент увлажнения и как его определяют? Именно об этом пойдет речь в данной информационной статье.

Коэффициент увлажнения: определение

Увлажнение территории и испарение влаги с её поверхности во всем мире происходят абсолютно одинаково. Однако на вопрос, что такое коэффициент увлажнения, в разных странах планеты отвечают совершенно по-разному. Да и само понятие в такой формулировке принято не во всех странах. К примеру, в США это "precipitation-evaporation ratio", что можно дословно перевести как "индекс (соотношение) увлажнения и испаряемости".

Но всё же, что такое коэффициент увлажнения? Это определенное соотношение между величиной осадков и уровнем испарения на данной территории за конкретный отрезок времени. Формула вычисления этого коэффициента очень простая:

где О - количество осадков (в миллиметрах);

а И - величина испаряемости (тоже в миллиметрах).

Разные подходы к определению коэффициента

Как определить коэффициент увлажнения? На сегодня известно около 20 разных способов.

В нашей стране (а также на постсоветском пространстве) чаще всего используется методика определения, предложенная Георгием Николаевичем Высоцким. Это выдающийся украинский учёный, геоботаник и почвовед, основоположник науки о лесе. За свою жизнь он написал свыше 200 научных трудов.

Стоит отметить, что в Европе, а также в США используют коэффициент Тортвейта. Однако методика его вычисления намного сложнее и имеет свои недостатки.

Определение коэффициента

Определить данный показатель для конкретной территории совсем не сложно. Рассмотрим эту методику на следующем примере.

Дана территория, для которой нужно рассчитать коэффициент увлажнения. При этом известно, что за год эта территория получает 900 мм а испаряется из нее за тот же период времени - 600 мм. Для вычисления коэффициента следует поделить количество осадков на испаряемость, то есть 900/600 мм. В результате мы получим значение 1,5. Это и будет коэффициент увлажнения для этой территории.

Коэффициент увлажнения Иванова-Высоцкого может равняться единице, быть ниже или же выше 1. При этом если:

  • К = 0, то увлажнение для данной территории считается достаточным;
  • К больше 1, то увлажнение избыточное;
  • К меньше 1, то увлажнение недостаточное.

Величина этого показателя, разумеется, будет напрямую зависеть от температурного режима на конкретной территории, а также от количества атмосферных осадков, выпадающих за год.

Для чего используется коэффициент увлажнения?

Коэффициент Иванова-Высоцкого - это крайне важный климатический показатель. Ведь он способен дать картину обеспеченности местности водными ресурсами. Этот коэффициент просто необходим для развития сельского хозяйства, а также для общего экономического планирования территории.

Он также определяет уровень сухости климата: чем он больше, тем В районах с избыточным увлажнением всегда наблюдается обилие озер и заболоченных территорий. В растительном покрове преобладает луговая и лесная растительность.

Максимальные значения коэффициента характерны для высокогорных районов (выше 1000-1200 метров). Здесь, как правило, наблюдается избыток влаги, который может достигать 300-500 миллиметров в год! Такое же количество атмосферной влаги получает степная зона за год. Коэффициент увлажнения в горных регионах достигает максимальных значений: 1,8-2,4.

Избыточное увлажнение также наблюдается в тундры, лесотундры, а также умеренных В этих районах коэффициент не более 1,5. В зоне лесостепи он колеблется в пределах от 0,7 до 1,0, а вот в степной зоне уже наблюдается недостаточное увлажнение территории (К = 0,3-0,6).

Минимальные значения увлажнения характерны для зоны полупустынь (всего около 0,2-0,3), а также для (до 0,1).

Коэффициент увлажнения в России

Россия - огромная страна, для которой характерно широкое разнообразие климатических условий. Если говорить о коэффициенте увлажнения, то его значения в пределах России колеблются в широких пределах от 0,3 до 1,5. Самое скудное увлажнение наблюдается в Прикаспии (около 0,3). В степной и лесостепной зоне оно несколько выше - 0,5-0,8. Максимальное увлажнение характерно для зоны лесотундры, а также для высокогорных районов Кавказа, Алтая, Уральских гор.

Теперь вам известно, что такое коэффициент увлажнения. Это достаточно важный показатель, который играет очень важную роль для развития народного хозяйства и агропромышленного комплекса. Данный коэффициент зависит от двух значений: от количества атмосферных осадков и от объемов испаряемости за определенный отрезок времени.

Испаряемость горючего обусловливает эффективность процессов смесеобразования и сгорания в двигателях, величину потерь при хранении и транспортировке, возможность образования паровых пробок в системе питания двигателя, пожаро- и взрывоопасность нефтепродуктов. Скорость испарения топлива зависит от его свойств и условий протекания процесса. Испаряемость горючего характеризует давление насыщенных паров, коэффициент диффузии, теплота испарения, теплоемкость и теплопроводность.

Определение давления насыщенных паров

Основным показателем испаряемости углеводородного горючего является давление насыщенных паров (ДНИ) или упругость паров - это давление, которое оказывают пары на стенки сосуда при испарении топлива в замкнутом пространстве. Оно характеризует испаряемость бензиновых фракций и пусковые качества топлива. ДНП зависит от химического и фракционного составов топлива. Как правило, чем больше в топливе содержится легкокипящих углеводородов, тем выше упругость паров. ДНП возрастает также при повышении температуры. Использование топлива с высокой упругостью паров приводит к повышенному образованию паровых пробок в системе питания, снижению наполнения цилиндров, падению мощности. В летних сортах бензинов ДНП не должно быть больше 80 кПа.

Зимние сорта бензинов для облегчения пуска двигателя в холодное время года имеют большее давление 80-100 кПа. Кроме того, ДНП характеризует физическую стабильность бензина.

Давление насыщенных паров горючего определяют разными способами: в металлическом сосуде, с помощью барометрической трубки, путем сравнения с давлением эталонной жидкости и рядом других методов.

Этот показатель определяют путем непосредственного измерения давления над жидкостью при определенной температуре или по температуре кипения при данном давлении. В первом случае в сосуде устанавливается равновесие между паром и жидкостью, которое фиксируют по величине равновесного давления соответствующим прибором для измерения давления. Во втором случае перегоняют установленный объем горючего при атмосферном давлении и фиксируют зависимость между количеством перегоняемого продукта и температурой, т.е. определяют фракционный состав. Давление насыщенных паров также можно устанавливать, в частности, и методом барометрической трубки, и сравнительным методом. Часто определяют давление паров (ГОСТ 1756-83), выдерживая испытуемый бензин в течение 20 мин в герметичном резервуаре при 38 °С. По истечении заданного времени измеряют давление паров топлива.

При определении ДНП в металлическом приборе в показания прибора определения давления необходимо вносить поправку, так как эти показания соответствуют суммарному давлению насыщенных паров горючего, воздуха и водяных паров при температуре испытания. Измерения в барометрической трубке дают значения истинного ДНП горючего, так как в этом приборе устанавливается равновесие между жидкой и паровой фазой, содержащей только пары горючею. Преимущества сравнительного метода - его малая чувствительность к колебаниям температуры в процессе измерения.

Определение давления насыщенных паров в металлической бомбе. Прибор (рис. 27.1) состоит из металлической бомбы 1, водяной бани 2 и ртутного манометра 8. Цилиндрическая бомба имеет две камеры: для горючего 10 и воздушную большего объема. Между камерами помещают резиновую прокладку, и они соединяются с помощью резьбового соединения. Воздушная камера имеет штуцер, который резиновой трубкой 6 через газовый кран 5 подсоединен к ртутному манометру. Водяная баня служит для создания и поддержания стандартной температуры; она имеет электронагреватель 1, мешалку 7 и термометр 4.

Для получения точных результатов при определении давления насыщенных паров очень важно правильно отобрать и сохранить пробу испытуемого горючего с тем, чтобы потери легких фракций были минимальными. Для отбора проб применяют специальный пробоотборник 9, который после заполнения хранится в ванне со льдом или в холодильнике.

Рис. 27.1.

  • 1 - металлическая бомба; 2 - водяная баня; 3 - электроподогреватель;
  • 4 - термометр; 5 - газовый кран; 6 - резиновая трубка; 7 - мешалка;
  • 8 - ртутный манометр; 9 - пробоотборник; 10 - камера для горючего

Определение давления насыщенных паров методом барометрической трубки. Прибор состоит из U-образной трубки 1, термостатиру- юшего сосуда 2, мешалки 3, термометра 4, ртутного манометра 8, буферной емкости 5 и вакуум-насоса (рис. 27.2). На горловине буферной емкости установлен тройник с трехходовым краном 7. Переключая трехходовой кран, можно соединить вакуум-насос с буферной емкостью, U-образной трубкой и ртутным манометром или соединить с атмосферой. Все части прибора соединены между собой резиновыми трубками 6.

Рис. 27.2.

  • 1 - U-образная трубка; 2 - термостатирующий сосуд; 3 - мешалка; 4 - термометр; 5 - буферная емкость; 6 - резиновые трубки;
  • 7 - трехходовой кран; 8 - ртутный манометр

Заполняют U-образную трубку испытуемым горючим таким образом, чтобы оно полностью заполнило колено с капилляром до середины изгиба трубки. Заполненную трубку погружают в термоста- тирующий сосуд, резиновой трубкой соединяют с буферной емкостью и выдерживают при температуре испытания. На короткое время буферную емкость сообщают с атмосферой, включают вакуум- насос. Под действием вакуума и давления паров горючего жидкость опускается в капилляре и поднимается в колене с расширением. В момент выравнивания уровней в обоих коленах трубки записывают показания ртутного манометра.

Давление насыщенных паров горючего p s в Па вычисляют по формуле:

где р ь - барометрическое давление, мм рт. ст.; р и - показания ртутного манометра, мм рт. ст.

Определение давления насыщенных паров горючего сравнительным методом. Прибор для измерения давления насыщенных паров и определения зависимости его от температуры методом сравнения с эталонами (рис. 27.3) состоит из двух колб 3, термостатирующего устройства 1 и ртутного U-образного манометра 8.

Рис. 27.3.

  • 1 - термостатирующее устройство; 2 - мешалка; 3 - коническая колба;
  • 4 - проходной кран; 5 - нагреватель; 6 - термометр;
  • 7 - резиновые трубки; 8 - U-образный манометр

Стеклянные колбы закрываются притертыми пробками с кранами 4, которые с помощью резиновых трубок 7 соединены с манометром.

Термостатирующее устройство представляет собой стеклянный цилиндрический сосуд, заполненный водой, в котором размещаются колбы, мешалка 2, нагреватель 5 и термометр 6.

Для отбора и сохранения пробы горючего используют пробоотборник. Испытуемое горючее заливают в одну из колб, в другую колбу помещают такое же количество эталонной жидкости - для бензинов бензол или изооктан. Колбы плотно закрывают пробками с кранами, помещают в термостат с заданной температурой и выдерживают в течение 5 мин.

В дальнейшем нагревают воду в термостате и фиксируют перепад давления на манометре через заданные интервалы температуры. Значение давления насыщенного пара горючего высчитывают как алгебраическую сумму давления насыщенного пара эталонной жидкости при данной температуре и показания манометра. Значение давления насыщенных паров эталонных жидкостей приводятся в справочной литературе. Для бензола эта зависимость показана на рис. 27.4.

Рис. 27.4.

По полученной зависимости p s = f(T) строят график в координатах Ig p s и /T и определяют значения коэффициентов в эмпирической формуле:

где Л - отрезок, отсекаемый на оси ординат (при условии T= 0); В - тангенс угла наклона прямой к оси абсцисс.

Нетрудно видеть, что на земной поверхности постоянно происходят два противоположно направленных процесса - орошение местности осадками и иссушение ее испарением. Оба эти процесса сливаются в единый и противоречивый процесс атмосферного увлажнения, под которым понимается соотношение количества осадков и испаряемости.
Существует более двадцати способов его выражения. Показатели называются индексами и коэффициентами или сухости воздуха, или атмосферного увлажнения. Наиболее известны следующие:

1. Гидротермический коэффициент Г. Т. Селянинова.
2. Радиационный индекс сухости М. И. Будыко.
3. Коэффициент увлажнения Г. Н. Высоцкого - Н. Н. Иванова. Лучше всего его выразить в %. Например, в европейской тундре осадков выпадает 300 мм, а испаряемость только 200 мм, следовательно, осадки превосходят испаряемость в 1,5 раза, атмосферное увлажнение равно 150%, или =1,5. Увлажнение бывает избыточным, больше 100%, или /01,0, когда осадков выпадает больше, чем может их испариться; достаточным, при котором сумма осадков и испаряемость приблизительно равны (около 100%), или С = 1,0; недостаточным, меньше 100%. или К<1,0, если испаряемость превосходит количество осадков; в последней градации полезно выделить ничтожное увлажнение, в котором осадки составляют ничтожную (13% и меньше, или К = 0,13) долю испаряемости.
4. В Европе и США пользуются коэффициентом Ч. У. Тортвейта, довольно сложным и весьма неточным; рассматривать его здесь нет необходимости. Обилие способов выражения увлажнения воздуха говорит о том, что ни один из них не может считаться не только точным, но и более верным, чем другие. Довольно широко пользуются формулой испаряемости и коэффициентом увлажнения Н. Н. Иванова и для целей землеведения он наиболее выразителен.

Коэффициент увлажнения - соотношение между количеством выпадающих атмосферных осадков за год или другое время и испаряемостью определенной территории. Коэффициент увлажнения является показателем соотношением тепла и влаги.


Обычно различают зону избыточного увлажнения, где К больше 1, например, в тундролесьях и тайге К = 1,5; зону неустойчивого увлажнения - в лесостепи 0,6-1,0; зону недостаточного увлажнения - в полупустыне 0,1-0,3, а в пустыне меньше 0,1.

Количество осадков еще не дает полного представления об обеспеченности территории влагой, так как часть атмосферных осадков испаряется с поверхности, а другая часть просачивается в почву.
При различных температурах с поверхности испаряется различное количество влаги. Количество влаги, которое может испаряться с водной поверхности при данной температуре, называется испаряемостью. Она измеряется в миллиметрах слоя испарившейся воды. Испаряемость характеризует возможное испарение. Фактическое же испарение не может быть больше годовой суммы осадков. Поэтому в пустынях Средней Азии оно составляет не более 150-200 мм в год, хотя испаряемость здесь в 6-12 раз выше. К северу испарение возрастает, достигая 450 мм в южной части тайги Западной Сибири и 500-550 мм в смешанных и широколиственных лесах Русской равнины. Далее к северу от этой полосы испарение вновь уменьшается до 100-150 мм в прибрежных тундрах. В северной части страны испарение ограничивается не количеством осадков, как в пустынях, а величиной испаряемости.
Для характеристики обеспеченности территории влагой используется коэффициент увлажнения - отношение годовой суммы осадков к испаряемости за этот же период.
Чем меньше коэффициент увлажнения, тем суше климат. Близ северной границы лесостепной зоны количество осадков примерно равно годовой испаряемости. Коэффициент увлажнения здесь близок к единице. Такое увлажнение считается достаточным. Увлажнение лесостепной зоны и южной части зоны смешанных лесов колеблется от года к году в сторону то увеличения, то понижения, поэтому оно неустойчивое. При коэффициенте увлажнения меньше единицы увлажнение считается недостаточным (степная зона). В северной части страны (тайга, тундра) количество осадков превышает испаряемость. Коэффициент увлажнения здесь больше единицы. Такое увлажнение называют избыточным.
Коэффициент увлажнения выражает соотношение тепла и влаги на той или иной территории и является одним из важных климатических показателей, так как определяет направление и интенсивность большинства природных процессов.
В районах избыточного увлажнения много рек, озер, болот. В преобразовании рельефа преобладает эрозия. Широко распространены луга и леса.

Высокие годовые значения коэффициента увлажнения (1,75-2,4) характерны для горных территорий с абсолютными отметками поверхности 800-1200 м. Эти и другие, более высокогорные, районы находятся в условиях избыточного увлажнения с положительным балансом влаги, избыток которой составляет 100 - 500 мм в год и более. Минимальные значения коэффициента увлажнения от 0,35 до 0,6 свойственны степной зоне, подавляющая часть поверхности которой расположена на отметках менее 600 м абс. высоты. Баланс влаги здесь отрицателен и характеризуется дефицитом от 200 до 450 мм и более, а территория, в целом - недостаточным увлажнением, типичным для полуаридного и даже аридного климата. Основной период испарения влаги длится с марта по октябрь, а ее максимальная интенсивность приходится на наиболее жаркие месяцы (июнь - август). Наименьшие значения коэффициента увлажнения наблюдаются именно в эти месяцы. Нетрудно заметить, что величина избыточного увлажнения горных территорий сопоставима, а в некоторых случаях и превышает суммарное количество атмосферных осадков степной зоны.