Формула нахождения количества вещества в физике. Молярная масса




На уроках химии в школе учат решать различные задачи, популярными среди которых являются задачи на вычисление количества вещества. Однако понять этот материал непросто, поэтому если вам необходимо узнать, как найти количество вещества, мы поможем вам в этом разобраться. Итак, рассмотрим все по порядку.

Что такое количество вещества?

Количество вещества - это величина, которая характеризует количество структурных однотипных единиц вещества. Структурными единицами могут выступать различные частицы: молекулы, атомы, ионы, электроны. Измеряется количество вещества в специальной единице - моль. Расчет в структурных единицах очень неудобен, так как даже небольшое количество вещества содержит в себе очень много таких элементов, именно поэтому и была придумана специальная единица измерения, которая, как мы уже знаем, называется моль. 1 моль содержит в себе определенное число единиц вещества, называется оно числом Авогадро (постоянной Авогадро). Постоянная Авогадро: N A = 6,022 141 79(30)·10 23 моль −1.

Единица измерения моль очень удобна и широко применяется в физике и химии, особенно когда важно детально выяснить количество вещества, вплоть до микроскопического состояния. Например, при описании химических реакций удобнее и точнее использовать количество вещества. Это электролиз, термодинамика, различные химические реакции, уравнения с идеальным газом и т. д.

Точное вычисление количества вещества необходимо, например, для химических реакций с участием газов. Вот почему очень важен вопрос о том, как найти количество вещества газа. Ниже мы рассмотрим данный вопрос, когда приведем формулу расчета вещества газа.

Химия: как найти количество вещества

Для вычисления количества вещества пользуются следующей формулой: n = m / M.

  • n - количество вещества
  • m - масса вещества
  • M - молярная масса вещества

Молярная масса представляет собой ту массу вещества, которая приходится на один моль вещества. Молярная масса равняется произведению молекулярной массы на число Авогадро.

Что касается газообразных веществ, то количество газа можно определить по объему: n = V / V m

  • n - количество вещества
  • V - объем газа в нормальных условиях
  • V m - молярный объем газа при нормальных условиях (равен 22,4 л/моль).

Объединяя рассмотренные данные, получаем формулу, которая содержит в себе все расчеты:

n = m/M = V/V m = N/N A

Примеры того, как найти количество вещества, вы можете посмотреть . Как видите, рассчитать количество вещества не так сложно, главное - это верно определить массу вещества или его объем (для газов), а после этого вычислить по предложенным формулам, разделив на постоянные данные (каждое вещество имеет постоянную молярную массу или постоянный молярный объем).

Наиболее типичными процессами, осуществляемыми в химии, являются химические реакции, т.е. взаимодействия между какими-то исходными веществами, приводящие к образованию новых веществ. Вещества реагируют в определенных количественных отношениях, которые требуется учитывать, чтобы на получение желаемых продуктов затратить минимальное количество исходных веществ и не создавать бесполезных отходов производства. Для расчета масс реагирующих веществ оказывается необходимой еще одна физическая величина, которая характеризует порцию вещества с точки зрения числа содержащихся в ней структурных единиц. Само по себе эго число необычайно велико. Это очевидно, в частности, из примера 2.2. Поэтому в практических расчетах число структурных единиц заменяется особой величиной, называемой количеством вещества.

Количество вещества - это мера числа структурных единиц, определяемая выражением

где N(X) - число структурных единиц вещества X в реально или мысленно взятой порции вещества, N A = 6,02 10 23 - постоянная (число) Авогадро, широко используемая в науке, одна из фундаментальных физических постоянных. В случае необходимости можно использовать более точное значение постоянной Авогадро 6,02214 10 23 . Порция вещества, содержащая N a структурных единиц, представляет собой единичное количество вещества - 1 моль. Таким образом, количество вещества измеряется в молях, а постоянная Авогадро имеет единицу измерения 1/моль, или в другой записи моль -1 .

При всевозможных рассуждениях и расчетах, связанных со свойствами вещества и химическими реакциями, понятие количество вещества полностью заменяет понятие число структурных единиц. Благодаря этому отпадает необходимость использовать большие числа. Например, вместо того чтобы сказать «взято 6,02 10 23 структурных единиц (молекул) воды», мы скажем: «взят 1 моль воды».

Всякая порция вещества характеризуется как массой, так и количеством вещества.

Отношение массы вещества X к количеству вещества называется молярной массой М(Х):

Молярная масса численно равна массе 1 моль вещества. Это важная количественная характеристика каждого вещества, зависящая только от массы структурных единиц. Число Авогадро установлено таким, что молярная масса вещества, выраженная в г/моль, численно совпадает с относительной молекулярной массой М г Для молекулы воды М г = 18. Это значит, что молярная масса воды М(Н 2 0) = 18 г/моль. Пользуясь данными таблицы Менделеева, можно вычислять и более точные значения М г и М(Х), но в учебных задачах по химии это обычно не требуется. Из всего сказанного понятно, насколько просто рассчитать молярную массу вещества - достаточно сложить атомные массы в соответствии с формулой вещества и поставить единицу измерения г/моль. Поэтому формулу (2.4) практически используют для расчета количества вещества:


Пример 2.9. Рассчитайте молярную массу питьевой соды NaHC0 3 .

Решение. Согласно формуле вещества М г = 23 + 1 + 12 + 3 16 = 84. Отсюда, по определению, M(NaIIC0 3) = 84 г/моль.

Пример 2.10. Какое количество вещества составляют 16,8 г питьевой соды? Решение. M(NaHC0 3) = 84 г/моль (см. выше). По формуле (2.5)

Пример 2.11. Сколько толик (структурных единиц) питьевой соды находится в 16,8 г вещества?

Решение. Преобразуя формулу (2.3), находим:

AT(NaHC0 3) = N a n(NaHC0 3);

tt(NaHC0 3) = 0,20 моль (см. пример 2.10);

N(NaHC0 3) = 6,02 10 23 моль" 1 0,20 моль = 1,204 10 23 .

Пример 2.12. Сколько атомов находится в 16,8 г питьевой соды?

Решение. Питьевая сода, NaHC0 3 , состоит из атомов натрия, водорода, углерода и кислорода. Всего в структурной единице вещества 1 + 1 + 1+ 3 = 6 атомов. Как было найдено в примере 2.11, данная масса питьевой соды состоит из 1,204 10 23 структурных единиц. Поэтому общее число атомов в веществе составляет

Решение школьных задач по химии может представлять некоторые трудности для школьников, поэтому мы выкладываем ряд примеров решений основный типов задач школьной химии с подробным разбором.

Для решения задач по химии необходимо знать ряд формул, указанных в таблице ниже. грамотно пользуясь этим нехитрым набором можно решить практически любую задачу из курса химии.

Расчеты количества вещества Расчеты доли Расчеты выхода продукта реакции
ν=m/M,

ν=V/V M ,

ν=N/N A ,

ν=PV/RT

ω=m ч /m об,

φ=V ч /V об,

χ=ν ч /ν об

η = m пр. /m теор. ,

η = V пр. /V теор. ,

η = ν пр. /ν теор.

ν — количество вещества (моль);

ν ч — количество вещества частное (моль);

ν об — количество вещества общее (моль);

m — масса (г);

m ч — масса частная (г);

m об — масса общая (г);

V — объём (л);

V М — объем 1 моль (л);

V ч — объём частный (л);

V об — объем общий (л);

N — количество частиц (атомов, молекул, ионов);

N A — число Авогадро (количество частиц в 1 моль вещества) N A =6,02×10 23 ;

Q — количество электричества (Кл);

F — постоянная Фарадея (F » 96500 Кл);

Р — давление (Па) (1атм »10 5 Па);

R — универсальная газовая постоянная R » 8,31 Дж/(моль×К);

Т — абсолютная температура (К);

ω — массовая доля;

φ — объёмная доля;

χ — мольная доля;

η — выход продукта реакции;

m пр., V пр., ν пр. — масса, объём, количество вещества практические;

m теор.,V теор., ν теор. — масса, объем, количество вещества теоретические.

Вычисление массы определённого количества вещества

Задание:

Определить массу 5 моль воды (Н 2 О).

Решение:

  1. Рассчитать молярную массу вещества, используя периодическую таблицу Д. И. Менделеева. Массы всех атомов округлять до единиц, хлора — до 35,5.
    M(H 2 O)=2×1+16=18 г/моль
  2. Найти массу воды по формуле:
    m = ν×M(H 2 O)= 5 моль × 18 г/моль = 90 г
  3. Записать ответ:
    Ответ: масса 5 моль воды равна 90 г

Вычисление массовой доли растворенного вещества

Задание:

Вычислить массовую долю соли (NaCl) в растворе, полученном при растворении в 475 г воды 25 г соли.

Решение:

  1. Записать формулу для нахождения массовой доли:
    ω(%) = (m в-ва /m р-ра)×100%
  2. Найти массу раствора.
    m р-ра = m(H 2 O) + m(NaCl) = 475 + 25 = 500 г
  3. Вычислить массовую долю, подставив значения в формулу.
    ω(NaCl) = (m в-ва /m р-ра)×100% = (25/500)×100%=5%
  4. Записать ответ.
    Ответ: массовая доля NaCl составляет 5%

Расчет массы вещества в растворе по его массовой доле

Задание:

Сколько граммов сахара и воды необходимо взять для получения 200 г 5 % раствора?

Решение:

  1. Записать формулу для определения массовой доли растворённого вещества.
    ω=m в-ва /m р-ра → m в-ва = m р-ра ×ω
  2. Вычислить массу соли.
    m в-ва (соли) = 200×0,05=10 г
  3. Определить массу воды.
    m(H 2 O) = m (р-ра) — m (соли) = 200 — 10 = 190 г
  4. Записать ответ.
    Ответ: необходимо взять 10 г сахара и 190 г воды

Определение выхода продукта реакции в % от теоретически возможного

Задание:

Вычислить выход нитрата аммония (NH 4 NO 3) в % от теоретически возможного, если при пропускании 85 г аммиака (NH 3) в раствор азотной кислоты (HNO 3), было получено 380 г удобрения.

Решение:

  1. Записать уравнение химической реакции и расставить коэффициенты
    NH 3 + HNO 3 = NH 4 NO 3
  2. Данные из условия задачи записать над уравнением реакции.
    m = 85 г m пр. = 380 г
    NH 3 + HNO 3 = NH 4 NO 3
  3. Под формулами веществ рассчитать количество вещества согласно коэффициентам как произведение количества вещества на молярную массу вещества:
  4. Практически полученная масса нитрата аммония известна (380 г). С целью определения теоретической массы нитрата аммония составить пропорцию
    85/17=х/380
  5. Решить уравнение, определить х.
    х=400 г теоретическая масса нитрата аммония
  6. Определить выход продукта реакции (%), отнеся практическую массу к теоретической и умножить на 100%
    η=m пр. /m теор. =(380/400)×100%=95%
  7. Записать ответ.
    Ответ: выход нитрата аммония составил 95%.

Расчет массы продукта по известной массе реагента, содержащего определённую долю примесей

Задание:

Вычислить массу оксида кальция (СаО), получившегося при обжиге 300 г известняка (СаСО 3), содержащего 10 % примесей.

Решение:

  1. Записать уравнение химической реакции, поставить коэффициенты.
    СаСО 3 = СаО + СО 2
  2. Рассчитать массу чистого СаСО 3 , содержащегося в известняке.
    ω(чист.) = 100% — 10% = 90% или 0,9;
    m(CaCO 3) = 300×0,9=270 г
  3. Полученную массу СаСО 3 записать над формулой СаСО 3 в уравнении реакции. Искомую массу СаО обозначить через х.
    270 г х г
    СаСО 3 = СаО + СО 2
  4. Под формулами веществ в уравнении записать количество вещества (согласно коэффициентам); произведения количеств веществ на их молярную массу (молекулярная масса СаСО 3 = 100 , СаО = 56 ).
  5. Составить пропорцию.
    270/100=х/56
  6. Решить уравнение.
    х = 151,2 г
  7. Записать ответ.
    Ответ: масса оксида кальция составит 151, 2 г

Расчет массы продукта реакции, если известен выход продукта реакции

Задание:

Сколько г аммиачной селитры (NH 4 NO 3) можно получить при взаимодействии 44,8 л аммиака (н. у.) с азотной кислотой, если известно, что практический выход составляет 80 % от теоретически возможного?

Решение:

  1. Запишите уравнение химической реакции, расставьте коэффициенты.
    NH 3 + HNO 3 = NH 4 NO 3
  2. Данные условия задачи напишите над уравнением реакции. Массу аммиачной селитры обозначьте через х.
  3. Под уравнением реакции напишите:
    а) количество веществ согласно коэффициентам;
    б) произведение молярного объёма аммиака на количество вещества; произведение молярной массы NH 4 NO 3 на количество вещества.
  4. Составьте пропорцию.
    44,4/22,4=х/80
  5. Решите уравнение, найдя х (теоретическую массу аммиачной селитры):
    х= 160 г.
  6. Найдите практическую массу NH 4 NO 3 , помножив теоретическую массу на практический выход (в долях от единицы)
    m(NH 4 NO 3) = 160×0,8=128 г
  7. Запишите ответ.
    Ответ: масса аммиачной селитры составит 128 г.

Определение массы продукта, если один из реагентов взят в избытке

Задание:

14 г оксида кальция (СаО) обработали раствором, содержащем 37,8 г азотной кислоты (HNO 3). Вычислите массу продукта реакции.

Решение:

  1. Запишите уравнение реакции, расставьте коэффициенты
    CaO + 2HNO 3 = Сa(NO 3) 2 + H 2 O
  2. Определите моль реагентов по формуле: ν = m/M
    ν(CaO) = 14/56=0,25 моль;
    ν(HNO 3) = 37,8/63=0,6 моль.
  3. Над уравнением реакции напишите рассчитанные количества вещества. Под уравнением — количества вещества согласно стехиометрическим коэффициентам.
  4. Определите вещество, взятое в недостатке, сравнив отношения взятых количеств веществ к стехиометрическим коэффициентам.
    0,25/1 < 0,6/2
    Следовательно, в недостатке взята азотная кислота. По ней и будем определять массу продукта.
  5. Под формулой нитрата кальция (Ca(NO 3) 2) в уравнении проставьте:
    а) количество вещества, согласно стехиометрического коэффициента;
    б) произведение молярной массы на количество вещества. Над формулой (Са(NO 3) 2) — х г.
    0,25 моль 0,6 моль х г
    CaO + 2HNO 3 = Сa(NO 3) 2 + H 2 O
    1 моль 2 моль 1 моль
    m = 1×164 г
  6. Составьте пропорцию
    0,25/1=х/164
  7. Определите х
    х = 41 г
  8. Запишите ответ.
    Ответ: масса соли (Ca(NO 3) 2) составит 41 г.

Расчёты по термохимическим уравнениям реакций

Задание:

Сколько теплоты выделится при растворении 200 г оксида меди (II) (СuO) в соляной кислоте (водный раствор HCl), если термохимическое уравнение реакции:

CuO + 2HCl = CuCl 2 + H­ 2 O + 63,6 кДж

Решение:

  1. Данные из условия задачи написать над уравнением реакции
  2. Под формулой оксида меди написать его количество (согласно коэффициенту); произведение молярной массы на количество вещества. Над количеством теплоты в уравнении реакции поставить х.
    200 г
    CuO + 2HCl = CuCl 2 + H­ 2 O + 63,6 кДж
    1 моль
    m = 1×80 г
  3. Составить пропорцию.
    200/80=х/63,6
  4. Вычислить х.
    х=159 кДж
  5. Записать ответ.
    Ответ: при растворении 200 г CuO в соляной кислоте выделится 159 кДж теплоты.

Составление термохимического уравнения

Задание:

При сжигании 6 г магния выделяется 152 кДж тепла. Составить термохимическое уравнение образования оксида магния.

Решение:

  1. Записать уравнение химической реакции, показав выделение тепла. Расставить коэффициенты.
    2Mg + O 2 = 2MgO + Q

  2. 6 г 152
    2Mg + O 2 = 2MgO + Q
  3. Под формулами веществ написать:
    а) количество вещества (согласно коэффициентам);
    б) произведение молярной массы на количество вещества. Под тепловым эффектом реакции поставить х.
  4. Составить пропорцию.
    6/(2×24)=152/х
  5. Вычислить х (количество теплоты, согласно уравнению)
    х=1216 кдж
  6. Записать в ответе термохимическое уравнение.
    Ответ: 2Mg + O 2 = 2MgO + 1216 кДж

Расчет объёмов газов по химическим уравнениям

Задание:

При окислении аммиака (NH 3) кислородом в присутствии катализатора образуется оксид азота (II) и вода. Какой объём кислорода вступит в реакцию с 20 л аммиака?

Решение:

  1. Записать уравнение реакции и расставить коэффициенты.
    4NH 3 + 5O 2 = 4NO + 6H 2 O
  2. Данные из условия задачи написать над уравнением реакции.
    20 л x
    4NH 3 + 5O 2 = 4NO + 6H 2 O
  3. Под уравнением реакции записать количества веществ согласно коэффициентам.
  4. Составить пропорцию.
    20/4=х/5
  5. Найти х.
    х= 25 л
  6. Записать ответ.
    Ответ: 25 л кислорода.

Определение объема газообразного продукта по известной массе реагента, содержащего примеси

Задание:

Какой объём (н.у) углекислого газа (СО 2) выделится при растворении 50 г мрамора (СаСО 3), содержащего 10 % примесей в соляной кислоте?

Решение:

  1. Записать уравнение химической реакции, расставить коэффициенты.
    CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2
  2. Рассчитать количество чистого СаСО 3 , содержащегося в 50 г мрамора.
    ω(СаСО 3) = 100% — 10% =90%
    Для перевода в доли от единицы поделить на 100%.
    w(СаСО 3) = 90%/100%=0,9
    m(CaCO 3) = m(мрамора)×w(СаСО 3) = 50×0,9 = 45 г
  3. Полученное значение написать над карбонатом кальция в уравнении реакции. Над СО 2 поставить х л.
    45 г x
    CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2
  4. Под формулами веществ записать:
    а) количество вещества, согласно коэффициентам;
    б) произведение молярной массы на кол-во вещества, если говорится о массе вещества, и произведение молярного объёма на количество вещества, если говорится об объёме вещества.

    Расчет состава смеси по уравнению химической реакции

    Задание:

    На полное сгорание смеси метана и оксида углерода (II) потребовался такой же объём кислорода. Определите состав газовой смеси в объёмных долях.

    Решение:

    1. Записать уравнения реакций, расставить коэффициенты.
      СО + 1/2О 2 = СО 2
      СН 4 + 2О 2 = СО 2 + 2Н 2 О
    2. Обозначить количество вещества угарного газа (СО) — х, а количество метана за у
    45 г x
    CaCO 3 + 2HCl =
    х
    СО + 1/2О 2 = СО 2
    у
    СН 4 + 2О 2 = СО 2 + 2Н 2 О
  5. Определить количество кислорода, которое будет израсходовано на сжигание х моль СО и у моль СН 4 .
    х 0,5 х
    СО + 1/2О 2 = СО 2
    у
    СН 4 + 2О 2 = СО 2 + 2Н 2 О
  6. Сделать вывод о соотношении количества вещества кислорода и газовой смеси.
    Равенство объёмов газов свидетельствует о равенстве количеств вещества.
  7. Составить уравнение.
    х + у = 0,5х + 2у
  8. Упростить уравнение.
    0,5 х = у
  9. Принять количество СО за 1 моль и определить требуемое количество СН 4 .
    Если х=1, то у=0,5
  10. Найти общее количество вещества.
    х + у = 1 + 0,5 = 1,5
  11. Определить объёмную долю оксида монооксида углерода (СО) и метана в смеси.
    φ(СО) = 1/1,5 = 2/3
    φ(СН­ 4) = 0,5/1,5 = 1/3
  12. Записать ответ.
    Ответ: объёмная доля СО равна 2/3, а СН 4 — 1/3.

Справочный материал:

Таблица Менделеева

Таблица растворимости

Атомы и молекулы – мельчайшие частицы вещества, поэтому в качестве единицы измерения можно выбрать массу одного из атомов и выражать массы других атомов в соотношении с выбранной. Так что же такое молярная масса, и какова ее размерность?

Что такое молярная масса?

Основоположником теории атомных масс был ученый Дальтон, который составил таблицу атомных масс и принял массу атома водорода за единицу.

Молярная масса – это масса одного моля вещества. Моль, в свою очередь, – количество вещества, в котором содержится определенное количество мельчайших частиц, которые участвуют в химических процессах. Количество молекул, содержащихся в одном моле, называют числом Авогадро. Эта величина является постоянной и не изменяется.

Рис. 1. Формула числа Авогадро.

Таким образом, молярная масса вещества – это масса одного моля, в котором находится 6,02*10^23 элементарных частиц.

Число Авогадро получило свое название в честь итальянского ученого Амедео Авагадро, который доказал, что число молекул в одинаковых объемах газов всегда одинаково

Молярная масса в Международной системе СИ измеряется в кг/моль, хотя обычно эту величину выражают в грамм/моль. Эта величина обозначается английской буквой M, а формула молярной массы выглядит следующим образом:

где m – масса вещества, а v – количество вещества.

Рис. 2. Расчет молярной массы.

Как найти молярную массу вещества?

Вычислить молярную массу того или иного вещества поможет таблица Д. И. Менделеева. Возьмем любое вещество, например, серную кислоту.Ее формула выглядит следующим образом: H 2 SO 4 . Теперь обратимся к таблице и посмотрим, какова атомная масса каждого из входящих в состав кислоты элементов. Серная кислота состоит из трех элементов – водород, сера, кислород. Атомная масса этих элементов соответственно – 1, 32, 16.

Получается, что суммарная молекулярная масса равна 98 атомных единиц массы (1*2+32+16*4). Таким образом, мы выясняли, что один моль серной кислоты весит 98 грамм.

Молярная масса вещества численно равна относительной молекулярной массе, если структурными единицами вещества являются молекулы. Молярная масса вещества также может быть равна относительной атомной массе, если структурными единицами вещества являются атомы.

Вплоть до 1961 года за атомную единицу массы принимали атом кислорода, но не целый атом а его 1/16 часть. При этом химическая и физическая единицы массы не были одинаковыми. Химическая была на 0,03% больше, чем физическая.

В настоящее время в физике и химии принята единая система измерения. В качестве стандартной е.а.м. выбрана 1/12 часть массы атома углерода.

Рис. 3. Формула единицы атомной массы углерода.

Молярная масса любого газа или пара измеряется очень легко. Достаточно использовать контроль. Один и тот же объем газообразного вещества равен по количеству вещества другому при одинаковой температуре. Известным способом измерения объема пара является определение количество вытесненного воздуха. Такой процесс осуществляется с использованием бокового отвода, ведущего к измерительному устройству.

Понятие молярной массы является очень важным для химии. Ее расчет необходим для создания полимерных комплексов и множества других реакций. В фармацевтике с помощью молярной массы определяют концентрацию данного вещества в субстанции. Также молярная масса важна при провидении биохимических исследований (обменный процесс в элементе).

В наше время благодаря развитию науки известны молекулярные массы практически всех составляющих крови, в том числе и гемоглобина.

Седьмая основная единица системы СИ - единица количества вещества моль - занимает совершенно особое место в числе основных единиц. Причин для этого существует несколько. Первая причина - эта величина практически дублирует имеющуюся основную единицу, единицу массы. Масса, определяемая как мера инертности тела или мера сил тяготения является мерой количества вещества. Вторая причина, обусловленная первой и тесно связанная с ней, состоит в том, что до сих пор не существует реализации эталона единицы этой физической величины. Многочисленные попытки независимого воспроизведения моля приводили к тому, что накопление точно измеренного количества вещества сводилось в конце концов с выходом на другие эталоны основных физических величин. Например, попытки электролитического выделения какого-либо вещества приводили к необходимости измерения массы и силы электрического тока. Точное измерение числа атомов в кристаллах приводило к измерению линейных размеров кристалла и его массы. Во всех других аналогичных попытках независимого воспроизведения моля метрологи наталкивались на те же трудности.

Естественно возникает вопрос: а по какой причине метрологические службы самых развитых стран согласились с тем, чтобы в числе основных единиц были две различные, характеризующие одно и то же физическое понятие? Ответ на этот вопрос очевиден, если отталкиваться от основного принципа построения систем единиц физических величин - удобства практического использования. В самом деле, для описания параметров механических процессов удобнее всего пользоваться произвольной искусственной мерой массы - килограммом. Для описания химических процессов очень важно знать число элементарных частиц, атомов или молекул, принимающих участие в химических реакциях. По этой причине моль называют химической основной единицей системы СИ, подчеркивая этим тот факт, что она вводится не для описания каких-то новых явлений, а для обслуживания специфических измерений, связанных с химическим взаимодействием веществ и материалов.

Указанная специфика породила еще одно очень важное качество единицы количества вещества - моля. Оно состоит в том, что при введении химического определения единицы регламентируется не просто количество любого вещества, а количества вещества в виде атомов или молекул данного сорта. Поэтому моль можно называть единицей количества индивидуального вещества. При таком определении моль становится более универсальной единицей количества вещества, чем килограмм. В самом деле, индивидуальные вещества обладают свойствами инерции и тяготения, так что эталон моля при условии его реализации на необходимом уровне точности может использоваться как эталон массы. Обратное же невозможно, т. к. мера массы, изготовленная, например, из сплава платины и иридия, никогда не сможет быть носителем свойств, присущих, например, кремнию или углероду.

Кроме удобства использования единицы количества вещества в проведении химических реакций введение второй основной единицы количества вещества оправдано еще одним обстоятельством. Оно состоит в том, что измерения количества вещества необходимо проводить в очень широком диапазоне изменения этой величины. В макроскопических явлениях объекты измерений в виде твердых тел содержат порядка 10 23 атомов. Это порядок величины числа атомов в грамм-эквиваленте вещества. В микроскопических явлениях существует даже проблема детектирования отдельных атомов. Следовательно, количество вещества необходимо измерять в диапазоне изменения более чем 20 порядков! Естественно, что ни одно устройство, ни один прибор на эталонном уровне такой возможности не обеспечит.

По этой причине очевидным становится желание метрологов иметь в качестве основных единицдве единицы количества вещества, одна из которых позволяет проводить точные измерения в области больших количеств, а вторая позволяет измерять частицы определенного вещества поштучно.

Нежелание метрологов отказаться от какой-либо основной единицы количества вещества, например от килограмма, связано с тем, что воспроизведение этой единицы изготовлением копии прототипа возможно с очень высокой точностью. Воспроизведение массы независимыми способами, такими как отбор одного литра воды или электролитическое осаждение определенной массы металла из раствора, оказывается значительно менее точным, чем изготовление копии килограмма взвешиванием.

В связи с перечисленными трудностями реализации основной единицы количества вещества в виде эталона не существует. Определение моля гласит:

Молем является количество вещества, имеющее столько структурных единиц, сколько их содержится в 12 граммах моно изотопа углерода C 12 .

Из определения с очевидностью следует, что точно это значение не установлено, По физическому смыслу оно равно постоянной Авогадро - числу атомов в грамм-эквиваленте углерода. Это дает возможность определять моль как величину, обратную постоянной Авогадро. Для 12 грамм углерода с массовым числом 12 количество атомов будет равно N A .

В соответствии с этим проблема создания эталона количества вещества сводится к уточнению постоянной Авогадро. Технически в настоящее время пользуются следующей процедурой:

    Изготавливается определенное количество (сотни грамм) сверхчистого кремния.

    На точных масс-спектрометрах измеряется изотопный состав этого кремния.

    Выращивается монокристалл сверхчистого кремния.

    Измеряется объем монокристалла по измерениям его массы и плотности V.

    На рентгеновском интерферометре измеряется размер элементарной ячейки куба в монокристалле кремния - а.

    Поскольку кристаллическая решетка в кремнии имеет форму куба, число структурных единиц в монокристалле оказывается равным

    По измерениям массы и эквивалентного атомного веса определяется число молей кремния в кристалле

где m - масса кристалла, ц. - атомный вес образца с учетом различного процентного содержания изотопов.

    Определяется постоянная Авогадро как число структурных единиц в одном грамм-эквиваленте кремния

Работы по уточнению постоянной Авогадро ведутся международными метрологическими центрами постоянно. Особенно большую активность проявляет национальная физическая лаборатория Германии РТВ в Брауншвейге. Идет постоянная борьба за чистоту исходного материала (кремния) как за счет очистки от примесей, так и за счет однородности изотопного состава. Достигнутый в настоящее время уровень содержания примесей составляет для большинства элементов не более одной частицы на миллион частиц кремния, а по некоторым примесям, мешающим кристаллообразованию, одна частица на миллиард частиц кремния.

При повторении работ по уточнению постоянной Авогадро усовершенствуются средства измерения массы кристалла, его плотности, изотопного состава, размеров кристаллической решетки. В настоящее время можно гарантировать достоверность определения постоянной Авогадро на уровне 10 -6 -10 -7 по относительной погрешности. Тем не менее это значение много больше погрешности в изготовлении копий эталона килограмма методом взвешивания.

Кроме точности, уступающей точности воспроизведения килограмма, описанная процедура определения моля страдает еще рядом существенных недостатков. Самый главный из них - это невозможность создания меры, равной какой-либо части моля или нескольких молей, т. е. создания мер кратных и дольных единиц. Любые попытки сделать это приводят к необходимости взвешивания, т. е. определения массы и выхода на эталон килограмма. Естественно, что смысл воспроизведения моля при этом теряется. Еще один принципиальный порок в процедуре использования моля это то, что проведенные измерения числа частиц на кремнии очень трудно, а иногда невозможно сопоставить с какими-либо другими частицами, и в первую очередь с углеродом, по которому собственно и определяется моль. В общем случае любая сверхточная процедура определения числа частиц какого-либо вещества может оказаться совершенно непригодной для другого вещества. Массу любых веществ мы можем сравнивать друг с другом, но число частиц одного вещества может оказаться несопоставимым с числом частиц другого вещества. В идеальном случае для обеспечения единства измерений состава веществ и материалов следует иметь универсальный метод воспроизведения моля любого вещества, но чаще всего такая задача оказывается невыполнимой. Очень большое число веществ в химические взаимодействия друг с другом не вступают.

Несмотря на все указанные проблемы в реализации эталона моля «химическая метрология» существует, и химикам очень удобно использовать единицу количества вещества, определенную как число частиц данного сорта. Именно поэтому моль широко используется в измерениях состава веществ и материалов и в особенности в измерениях экологической направленности. В настоящее время проблемы экологии как межнациональные и межгосударственные являются одной из основных точек приложения достижений метрологии как науки об обеспечении единства измерений.