Организация генома митохондрий. Митохондриальные болезни




Об авторах

Наталия Васильевна Сернова — кандидат физико-математических наук, магистр протеомики и биоинформатики Женевского университета. Научные интересы: биоинформатика, регуляция транскрипции, сравнительная геномика, эволюция млекопитающих.

Михаил Сергеевич Гельфанд — доктор биологических наук, член Европейской академии, заместитель директора Института проблем передачи информации им. А. А. Харкевича РАН, профессор факультета биоинженерии и биоинформатики Московского государственного университета им. М. В. Ломоносова. Область научных интересов — биоинформатика, сравнительная и функциональная геномика, молекулярная эволюция, системная биология, метагеномика.

Практически во всех клетках эукариот есть митохондрии - органеллы, которые нужны в первую очередь для синтеза АТФ. История симбиоза бактерий, родственных риккетсиям, и предка эукариот, в результате которого возникли митохондрии, очень интересна, однако здесь речь пойдет не о ней. Для нас сейчас будет важно лишь то, что у митохондрий есть свой собственный геном (у млекопитающих его размер 15–20 тыс. пар нуклеотидов), что у животных он передается строго по материнской линии и что в каждой клетке присутствуют десятки и даже тысячи митохондрий, а стало быть, в любом образце количество копий митохондриального генома на несколько порядков превышает число копий любого фрагмента ядерного генома. Это особенно существенно при анализе древних образцов, в которых сохранилось мало неповрежденной ДНК.

Мы будем обсуждать интрогрессию митохондриальных геномов. Интрогрессия - это форма гибридизации, при которой гены одного вида проникают в генофонд другого. В результате образуются гибриды первого поколения, способные к возвратному скрещиванию с одним или обоими родительскими видами. Если возвратное скрещивание происходит многократно в последовательных поколениях, то может возникнуть поток вариантов некоторых генов от одного вида к другому. Такой прием часто используется в селекции, когда требуется передать некий признак от одного вида другому, например устойчивость к болезням от дикого вида к культурному сорту: производят многократные возвратные скрещивания с культурным сортом, а отбор ведут по данному признаку. Постепенно в большинстве локусов остаются только аллели культурного сорта, а локусы, от которых зависит желаемый признак, наследуются от дикого вида - и в результате получается новый устойчивый сорт.

Однако интрогрессия может происходить и в результате естественной гибридизации. Известно, что межвидовая гибридизация характерна для 10% видов животных, в частности для 6% видов млекопитающих . Если все потомки родителей, принадлежащих к разным видам, далее скрещиваются с представителями только одного из них, причем многократно в ряде последовательных поколений, то возникает однонаправленный поток вариантов генов от вида, который представляет собой донора, в популяционную систему, служащую реципиентом. Таким образом, интрогрессия - это такая гибридизация, при которой поток генов и рекомбинация доходят до видового уровня. При этом из-за упомянутых особенностей наследования митохондриального генома у животных и из-за отсутствия рекомбинации их митохондриальной ДНК оказывается легко следить за интрогрессией именно митохондриальных генов. Особый интерес представляет так называемый митохондриальный захват, когда в какой-либо популяции все митохондриальные геномы происходят от одного вида, а все ядерные - от другого. Следует отметить, что это довольно строгое определение: никогда нельзя гарантировать, что в геноме гибридов не сохранилось фрагмента ядерного генома второго вида хотя бы у части особей, поскольку для этого надо проводить подробное генотипирование большого числа ядерных геномов, что долго и дорого.

Интрогрессия митохондриальных геномов ведет к тому, что филогении, построенные по митохондриальным и ядерным маркерам, оказываются несогласованными. В недавнем обзоре обобщили 126 случаев полной и неполной митохондриальной интрогрессии у животных. Большинство из этих случаев описано уже в XXI веке. Причины интрогрессии могут быть разными: селективное преимущество, демографические особенности, смещение зоны гибридизации, влияние человека, у насекомых - заражение вольбахией и разнообразные связанные с этим эффекты, например искажение соотношения полов. Чаще всего, по-видимому, действует комбинация причин. Особый интерес представляют случаи полной интрогрессии, когда на всем ареале подавляющее большинство особей имеет митохондрии, геномы которых практически совпадают с митохондриальными геномами другого вида. Такого не замечали у земноводных, зато наблюдали четыре подобных случая у птиц, пять - у рыб и два - у насекомых. Четыре случая было отмечено у млекопитающих: митохондриальный геном тара (Hemitragus jemlahicus ) у предка диких европейских коз Capra spp. , белохвостого оленя (Odocoileus virginianus ) у чернохвостого (O. hemionus ) в Северной Америке , расы Carlit обыкновенной землеройки, или бурозубки (Sorex araneus ), у иберийской (S. granarius ) и, наконец, бурого медведя (Ursus arctos ) у белого (U. maritimus ) . О медведях речь пойдет ниже, а сначала обсудим слонов.

Африканские слоны: один или два вида?

По морфологическим особенностям африканские слоны делятся на две группы: саванные (Loxodonta africana ), которые живут в сухой саванне, и лесные (L. cyclotis ), которые обитают во влажных лесах. Вопрос о статусе этих групп до сих пор остается открытым. Некоторые авторы считают эти группы подвидами , в то время как другие относят их к разным видам [8–13 ] . Расхождение лесных и саванных слонов произошло от 2,5 млн лет назад (по ядерной ДНК) до 5,5 млн лет назад (по митохондриальной ДНК) .

Ареалы этих двух групп не разделены, и существует обширная зона контакта, на которой возможна гибридизация. В ряде популяций, например, в регионе Серенгети в Восточной Африке, большинство саванных слонов имеют митохондриальный геном лесных . Это объясняют межвидовыми скрещиваниями лесных самок с саванными самцами с последующей интрогрессией. Возможный сценарий, который учитывает хорошо изученные особенности социального поведения африканских слонов , выглядит следующим образом [8–10 ].

Слоны живут большими стадами - до нескольких десятков особей. Стадо включает только самок разного возраста и их неполовозрелое потомство и возглавляется старшей самкой-матриархом. Все слоны в стаде родственны по материнской линии и имеют одинаковый митохондриальный геном. Самцы слонов, достигшие половой зрелости (12 лет), изгоняются из стада. Они тоже могут объединяться в группы, которые состоят из самцов разного возраста и где главенствуют крупные пожилые самцы.

Когда самка достигает репродуктивного возраста (10–12 лет) и у нее начинается эстральный цикл, она уходит из стада на период до нескольких недель для встречи с самцом. Затем возвращается в материнское стадо и через 22 месяца рожает детеныша, которого выкармливает около двух лет, т.е. в течение почти четырех лет самка репродуктивного возраста не готова к новому контакту. Для спаривания самки предпочитают крупных самцов.

Рассредоточение слонов по группам не приводит к полному разделению родственников мужского и женского пола, поэтому слоны способны распознавать сородичей. Учитывая, что саванные самцы предпочитают избегать инбридинга и что они крупнее лесных слонов и репродуктивно над ними доминируют, а эстральные самки встречаются редко, не исключено, что в таких условиях лесные самки заполняют освободившуюся нишу и составляют конкуренцию саванным самкам. Здесь уместно вспомнить, что корреляция между внутривидовым потоком генов и межвидовым отрицательна .

После спаривания с саванным самцом лесная самка возвращается в материнское стадо лесных слонов. Через 22 месяца на свет появляется гибрид с митохондриальным геномом лесных слонов и ядерной ДНК саванных и лесных слонов поровну. Гибридная самка начнет передавать митохондриальный геном следующим поколениям по материнской линии. Каждое возвратное скрещивание лесных или гибридных самок с саванными самцами будет уменьшать долю ядерной ДНК лесного слона наполовину. И через много поколений у гибридов ядерная ДНК саванного слона полностью заменит ядерную ДНК лесного слона. К тому же саванные самцы почти вдвое крупнее лесных, а значит, пользуются преимуществом при спаривании в том числе и с лесными и гибридными самками. Кроме того, гибридные самцы могут обладать пониженной плодовитостью согласно правилу Холдейна: если при скрещивании разных подвидов или рас жизнеспособность потомства зависит от пола, более редким (или вообще отсутствующим) будет гетерогаметный пол, то есть у млекопитающих - самцы .

Эта модель хорошо объясняет, почему в областях, далеких от зоны контакта двух групп, практически нет ни слонов с промежуточной морфологией, ни особей со смешанным - саванным с лесным - ядерным геномом, в том числе среди саванных слонов с митохондриальным геномом лесного типа. Однако она наталкивается на противоречие: поскольку самки слона возвращаются в материнское стадо, гибридные самки оказываются в стаде с лесными, а значит, не могут передать свою митохондриальную ДНК саванным слонам. Тем более не могут этого сделать гибридные самцы, ведь митохондриальный геном наследуется только по материнской линии.

Возможно, этот парадокс объясняется изменениями популяционной структуры и ареала слонов под влиянием климатических изменений и деятельности человека - хозяйственной и охоты, в том числе браконьерской. Есть наблюдения, что, когда численность натального стада у саванных слонов по тем или иным причинам падает, матриарх может принимать самок из других, неродственных, групп . Так, например, в Уганде, где популяции слонов существенно сократились из-за браконьерства, самки с разными митохондриальными гаплотипами сформировали новые социальные группы . Кроме того, раз гибридные самки имеют ядерную ДНК саванного слона, они могут быть морфологически близки к саванным сородичам, а потому их не изгоняют из стада, когда они оказываются в зоне симпатрии.

Однако недавний подробный анализ четырех популяций слонов из контактных зон показал более сложную картину (рис. 1). Среди гибридных особей ни одна не оказалась гибридом первого поколения. Это доказывает, что гибриды саванных и лесных слонов фертильны. Однако, когда построили филогенетические деревья по маркерам митохондрий (строго материнское наследование) и Y-хромосом (строго отцовское), стало очевидно, что гибридизация шла в обоих направлениях: геномы и саванных, и лесных слонов образовали по две четко выделенные ветви, так что геномы гибридных особей могли принадлежать и одной, и другой.

Тем не менее все авторы последних исследований склонны считать лесных и саванных слонов разными видами [ , ]. По мнению Эрнста Майра, гибридизация в зоне контакта необязательно означает, что мы имеем дело с одним видом - гибридами. Генетическая цельность двух видов вполне может сохраняться . В случае африканских слонов это и наблюдается: вдали от зоны контакта нет никаких следов смешения, кроме митохондриальной интрогрессии, а морфологически виды, несмотря на нее, различны.

Бурые и белые медведи: один или два вида?

Ответ кажется очевидным. Конечно, два - достаточно сходить в зоопарк и посмотреть. Однако...

Ученые из Института арктической биологии Университета Аляски исследовали популяцию бурых медведей с архипелага Александра у берегов Аляски (с островов Адмиралти, Баранова и Чичагова, которые по первым латинским буквам называют островами АВС; рис. 2). В 1996 г. они заметили, что митохондриальные геномы этих медведей больше похожи на митохондриальные геномы белых медведей (Ursus maritimus ), чем бурых (U. arctos ) из других популяций . Несколько гипотез пытались это объяснить: происхождением белых медведей из древней прибрежной популяции бурых, которая сохранилась только на островах АВС , интрогрессией митохондриальных генов бурых медведей с островов АВС в геном белых и, наоборот, интрогрессией митохондриальных генов белых медведей в геном бурых [ , ]. Предположение, что белые медведи недавно произошли от бурых, казалось бы, подтвердилось, когда секвенировали митохондриальный геном древнего (130–110 тыс. лет назад) белого медведя из челюстной кости, найденной на архипелаге Шпицберген . Оказалось, этот геном очень близок к точке ответвления митохондриальных геномов современных белых медведей и ближайших к ним бурых медведей с островов ABC.

Получается, белые медведи - это не отдельный вид, а ветвь бурых медведей, которая отделилась сравнительно недавно, не более 150 тыс. лет назад, и сильно изменилась морфологически? Более обширный анализ митохондриальных геномов указывает на еще более фантастический сценарий. Действительно, митохондриальные геномы древних белых медведей из Скандинавии ближе всего к геномам медведей с островов АВС. В то же время митохондриальные геномы современных белых медведей существенно ближе к геномам вымершей ветви бурых медведей из Ирландии - расхождение этих двух линий произошло менее 40 тыс. лет назад (рис. 3). Следует отметить, что эти же данные интерпретировали заново уже иначе - как интрогрессию митохондриальных генов белого медведя в геном бурого . Правда, это не объясняет, почему эта ветка находится в глубине большой клады бурых медведей.

Анализ же ядерных геномов показывает, что белые медведи разделились с бурыми примерно 600 тыс. лет назад (рис. 4). Согласно этой работе, в ядерных геномах не наблюдается следов (недавних) гибридизаций между белыми и бурыми медведями, однако согласно другим исследованиям 5–10% ядерного генома бурых медведей с островов АВС происходят из генома белого медведя, а расхождение видов отнесено на 4 млн лет назад . Вообще, имеет смысл отметить важное последствие гибридизации, которое, однако, существенно затрудняет датировки: она ведет к тому, что различные геномные локусы имеют разную историю. Так, еще в одной работе расхождение бурых и белых медведей датируется примерно 400 тыс. лет назад, хотя также отмечен существенный поток генов белого медведя в геном медведей с островов АВС. Наконец, следует заметить, что во многих работах отмечается меньшая эффективная численность популяции белых медведей по сравнению с бурыми и эффект бутылочного горлышка - эпизоды резкого сокращения численности популяции после разделения с бурыми [ , , ]. Расхождение Y-хромосом белого и бурого медведя, для которых не заметно признаков интрогрессии, датируется приблизительно 1,1 млн лет назад (рис. 5). Вопрос о потоке ядерных генов бурого медведя в геном белого остается противоречивым: отмечались как следы слабого потока , так и полное его отсутствие . При этом поток генов белого медведя шел и в геномы материковых бурых медведей с Аляски, хотя и был слабее . Полный список оценок дан в обзоре .

Положительный отбор в геномах белых медведей затронул гены, связанные с формированием жировой ткани, развитием сердечной мышцы и свертываемостью крови, а также пигментацией меха . В то время как интрогрессии в геном бурого медведя подвергся ген ALDH7A1 , который регулирует осмотический стресс: это могло иметь приспособительное значение для прибрежной (островной) популяции бурых медведей .

Один из главных, принципиальных открытых вопросов, который слабо обсуждается в литературе, - произошло ли полное закрепление интрогрессировавших митохондриальных генов бурого медведя во всей популяции белых медведей под действием отбора или же в силу случайного дрейфа. Второй вопрос - была ли первоначально популяция бурых медведей с островов АВС популяцией белых медведей с почти тотальной интрогрессией ядерных генов бурых медведей за счет самцов, приплывавших с материка , или же популяцией бурых медведей, в геном которой интрогрессировали митохондриальные гены белых медведей в результате одной или нескольких гибридизаций с самками белого медведя.

Ко второму вопросу стоит добавить, что географическое распределение митохондриальных гаплотипов и белых медведей, и бурых высоко структурировано, что отражает привязанность самок к месту рождения, тогда как гаплотипы Y-хромосомы перемешаны из-за частых миграций самцов . С одной стороны, это косвенно свидетельствует о том, что случайный дрейф митохондриального генома должен быть затруднен. С другой стороны, его могли облегчать колебания численности и эффект бутылочного горлышка.

Хотя основные факты - полную интрогрессию митохондриальных генов бурого медведя в геном белого (возможно, неоднократную), значительный поток ядерных генов белого медведя в геном бурых медведей с островов АВС (и возможно, с Аляски), значительные колебания численности белых медведей - по-видимому, в целом можно считать твердо установленными, детали этой эволюционной истории нуждаются в прояснении. Как и всегда, нужно больше геномов - и современных, из разных популяций, и древних.

И снова люди

Пожалуй, одна из основных загадок геномной эволюции древних людей - происхождение денисовцев. Мы уже писали об этом вопросе в предыдущих статьях [ , ], однако полезно вернуться к нему именно в контексте обсуждаемых здесь несовпадений истории ядерных и митохондриальных геномов.

Денисовцы по ядерному геному - сестринская группа с неандертальцами, однако разошлись с ними вскоре после отделения от кроманьонцев. Оценки неточны, но в первом приближении разделение кроманьонцев и денисовцев + неандертальцев произошло примерно 650 тыс. лет назад, а денисовцев и неандертальцев - около 450 тыс. лет назад. Нам известен один ядерный геном из Денисовой пещеры на Алтае (возраст - примерно 50 тыс. лет) и несколько митохондриальных геномов оттуда же, самый старый из которых датируется 110 тыс. лет назад. Кроме того, известны фрагменты денисовского генома, которые сохранились в геномах австранезийцев. Денисовский вариант гена EPAS1 практически зафиксировался в популяции тибетцев. Все это указывает на обширность ареала денисовцев.

А вот по митохондриальному геному денисовцы разделились с ветвью неандертальцев + кроманьонцев около миллиона лет назад. Этот геном ближе всего к митохондриальному геному человека возрастом около 430 тыс. лет из пещеры Сима де лос Уэсос в Испании. Однако получается парадокс: ядерный геном из пещеры Сима де лос Уэсос ближе к неандертальскому, чем к денисовскому (авторы оригинальной статьи не приводят оценок времени расхождения). Таким образом, нет никакого простого сценария, который бы включал лишь интрогрессию, чтобы объяснить эти наблюдения. Авторы предполагают, что митохондриальные геномы из Денисовой пещеры и Сима де лос Уэсос - прямые потомки геномов древнего выходца из Африки, предка неандертальцев и денисовцев, кем бы он ни был с антропологической точки зрения, а митохондриальные геномы неандертальцев - результат поздней интрогрессии африканского же происхождения. В пользу этой гипотезы говорит то, что в геноме алтайского неандертальца обнаружены кроманьонские фрагменты, причем это следы гибридизации, предшествовавшей выходу из Африки предка современных европейцев и азиатов . Однако такие фрагменты отсутствуют в геномах других неандертальцев, в то время как митохондриальные геномы всех неандертальцев очевидно образуют единую ветвь на филогенетическом дереве. Кроме того, возникают проблемы с датировкой: носитель кроманьонских фрагментов в геноме алтайского неандертальца отделился от остальных кроманьонцев примерно 250 тыс. лет назад (до начала разделения современных популяций в Африке), а разделение митохондриальных ветвей кроманьонцев и неандертальцев датируется примерно 500 тыс. лет назад. Получается, это не могло быть результатом одного события. Альтернативное объяснение состоит в том, что источник митохондриальной ДНК денисовцев и человека из пещеры Сима де лос Уэсос - неизвестные представители рода Homo (H. erectus ?). Однако оно также не дает простого ответа на вопрос, где, когда и с кем произошла эта гибридизация.

Удивительно не то, что мы не знаем ответов на многие вопросы. Удивительно то, что мы можем эти вопросы задавать и надеемся получить на них ответы.

Н. В. Сернова благодарна своей маме Наталии Владимировне Серновой за вдохновение и помощь. М. С. Гельфанд благодарен фонду «Эволюция» за поддержку научно-популярных лекций, подготовка к которым помогла лучше осознать изложенный материал.

Работа выполнена при поддержке Российского научного фонда (проект 14-24-00155).

Литература
. Mallet J. Hybridization as an invasion of the genome // Trends Ecol. Evol. 2005. V. 20. P. 229–237.
. Toews D. P. L., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals // Mol. Ecol. 2012. V. 21. P. 3907–3930.
. Ropiquet A., Hassanin A. Hybrid origin of the Pliocene ancestor of wild goats // Mol. Phylogenet. Evol. 2006. V. 41. P. 395–404.
. Cathey J. C., Bickham J. W., Patton J. C. Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer // Evolution . 1998. V. 52. P. 1224–1229.
. Yannic G., Dubey S., Hausser J. et al. Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group // Mol. Phylogenet. Evol. 2010. V. 57. P. 1062–1071.
. Edwards C. J., Suchard M. A., Lemey P. et al. Ancient hybridization and an Irish origin for the modern polar bear matriline // Curr. Biol. 2011. V. 21. P. 1251–1258.
. Debruyne R. A case study of apparent conflict between molecular phylogenies: the interrelationships of African elephants // Cladistics . 2005. V. 21. P. 31–50.
. Cyto-nuclear genomic dissociation and the African elephant species question // Quat. Int. 2007. V. 169–170. P. 4–16.
. Roca A. L., Ishida Y., Brandt A. L. et al. Elephant natural history: a genomic perspective // Annu. Rev. Anim. Biosci. 2015. V. 3. P. 139–167.
. Roca A. L., Georgiadis N., O’Brien S. J. Cytonuclear genomic dissociation in African elephant species // Nat. Genet. 2005. V. 37. P. 96–100.
. Grubb P., Groves C. P., Dudley J. P. et al. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900) // Elephant . 2000. V. 2. P. 1–4.

05.05.2015 13.10.2015

Все сведения о строении организма человека и его предрасположенности к болезням зашифрованы в виде молекул ДНК. Основная информация находится в ядрах клеток. Однако 5% ДНК локализовано в митохондриях.

Что называют митохондриями?

Митохондрии являются клеточными органеллами эукариот, которые нужны для того, чтобы осуществить превращение энергии, заключенной в питательных веществах в соединения, которые могут усваивать клетки. Поэтому они нередко называются «энергетическими станциями», ведь без них существование организма невозможно.
Своя генная информация у данных органелл появилась вследствие того, что ранее они представляли собой бактерии. После их попадания в клетки организма-хозяина, они не смогли сохранить свой геном, при этом часть собственного генома они передали клеточному ядру организма-хозяина. Поэтому сейчас их ДНК (мтДНК) содержит только часть, а именно 37 генов от исходного количества. Главным образом, в них зашифрован механизм трансформации глюкозы до соединений — углекислый газ и вода с получением энергии (АТФ и НАДФ), без которой и невозможно существование организма хозяина.

В чем уникальность мтДНК?

Главное свойство, присущее митохондриальной ДНК, заключается в возможности наследовании ее только по линии матери. При этом все дети (мужчины или женщины) могут получить митохондрии от яйцеклетки. Происходит это благодаря тому, что женские яйцеклетки содержат более высокое количество данных органелл (до 1000 раз), чем мужские сперматозоиды. Вследствие этого дочерний организм получает их только от своей матери. Поэтому и унаследование их от отцовской клетки совершенно невозможно.
Известно, что гены митохондрий передались нам из далекого прошлого — от нашей проматери — «митохондриальной Евы», являющейся общим предком всех людей планеты по материнской линии. Поэтому данные молекулы считаются самым идеальным объектом при генетических экспертизах для установления родства по линии матери.

Как происходит определение родства?

Митохондриальные гены имеют множество точечных мутаций, благодаря чему они очень вариабельны. Это и позволяет установить родство. На генетической экспертизе с использованием специальных генетических анализаторов – секвенаторов, определяются индивидуальные точечные нуклеотидные изменения генотипа, их сходство или различие. У людей, не имеющих родственных связей по линии матери геномы митохондрий различаются существенно.
Определение родства возможно благодаря удивительным характеристикам митохондриального генотипа:
они не подвержены рекомбинациям, поэтому молекулы изменяются лишь в процессе мутирования, который может происходить в течение тысячелетия;
возможность выделения из любых биологических материалов;
при недостатке биоматериала или деградации ядерного генома, мтДНК может стать единственным источником для проведения анализов, благодаря огромному количеству ее копий;
вследствие большого количества мутаций по сравнению с ядерными генами клеток, достигается высокая точность при проведении анализа генного материала.

Что возможно установить при генной экспертизе?

Генная экспертиза мтДНК поможет при диагностике следующих случаев.
1. Для установления родства между людьми по линии матери: между дедом (или бабушкой) с внуком, братом с сестрой, дядей (или тетей) с племянником.
2. При анализе небольшого количества биоматериала. Ведь мтДНК содержится у каждой клетки в значительном количестве (100 — 10 000), тогда как ядерная — только по 2 копии у каждой 23 имеющихся хромосом.
3. При идентификации древнего биоматериала – сроком хранения более, чем тысячелетнего периода. Именно благодаря данному свойству ученые смогли идентифицировать генный материал из останков членов семьи Романовых.
4. При отсутствии иного материала, ведь даже один волос содержит значительное количество мтДНК.
5. При определении принадлежности генов к генеалогическим ветвям человечества (африканской, американской, ближневосточной, европейской гаплогруппе и другим), благодаря чему возможно определение происхождения человека.

Митохондриальные заболевания и их диагностика

Митохондриальные заболевания проявляются в основном за счет дефектов мтДНК клеток, связанных со значительной подверженности данных органелл к мутациям. Сегодня насчитывается уже порядка 400 болезней, связанных с их дефектами.
В норме каждая клетка могут включать как нормальные митохондрии, так и с определенными нарушениями. Часто признаки заболевания при этом никак не проявляют себя. Однако при ослаблении процесса синтеза энергии в них наблюдается проявление таких болезней. Данные заболевания, прежде всего, связаны с нарушением мышечной или нервной систем. Как правило, при таких болезнях наблюдается позднее начало клинических проявлений. Частота возникновения данных болезней составляет 1:200 человек. Известно, что наличие мутаций митохондрий способно вызвать нефротический синдром при беременности женщины и даже внезапную смерть младенца. Поэтому, исследователями предпринимаются активные попытки решения данных проблем, связанных с лечением и передачей генетических заболеваний этого типа от матерей к детям.

Как связано старение с митохондриями?

Реорганизацию генома данных органелл обнаружили и при анализе механизма старения организма. Сотрудниками Университета Хопкинса опубликованы результаты, проведенные при наблюдениях за показателями крови 16000 пожилых людей из Америки, демонстрирующие, что снижение количества мтДНК было напрямую взаимосвязано с возрастом пациентов.

Большинство из рассмотренных вопросов сегодня стало основой новой науки – «митохондриальной медицины», сформировавшейся в виде отдельного направления в 20 столетии. Прогнозирование и лечение заболеваний, связанных с нарушением генома митохондрий, генетическая диагностика – вот первостепенные её задачи.

© Г.М.Дымшиц

Сюрпризы митохондриального генома

Г.М. Дымшиц

Григорий Моисеевич Дымшиц, доктор биологических наук, профессор кафедры молекулярной биологии Новосибирского государственного университета, заведующий лабораторией структуры генома Института цитологии и генетики Сибирского отделения РАН. Соавтор и редактор четырех школьных учебников по общей биологии.
Со времени обнаружения в митохондриях молекул ДНК прошло четверть века, прежде чем ими заинтересовались не только молекулярные биологи и цитологи, но и генетики, эволюционисты, а также палеонтологи и криминалисты, историки и лингвисты. Такой широкий интерес спровоцировала работа А.Уилсона из Калифорнийского университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человеческих рас, заселяющих пять континентов. По типу, местоположению и количеству индивидуальных мутаций установили, что все митохондриальные ДНК возникли из одной предковой последовательности нуклеотидов путем дивергенции. В околонаучной прессе вывод этот интерпретировали крайне упрощенно - все человечество произошло от одной женщины, названной митохондриальной Евой (и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад. Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из останков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад .

Сегодня митохондриальная генетика человека интенсивно развивается как в популяционном, так и в медицинском аспекте. Установлена связь между рядом тяжелых наследственных заболеваний и дефектами в митохондриальных ДНК. Генетические изменения, ассоциированные со старением организма, наиболее выражены в митохондриях. Что же представляет из себя геном митохондрий, отличающийся у человека и других животных от такового у растений, грибов и простейших и по размеру, и по форме, и по генетической емкости? Как работает и как возник митохондриальный геном у разных таксонов? Об этом и пойдет речь в нашей статье.

Митохондрии называют энергетическими станциями клетки. Помимо наружной гладкой мембраны они имеют внутреннюю мембрану, образующую многочисленные складки - кристы. В них встроены белковые компоненты дыхательной цепи - ферменты, участвующие в преобразовании энергии химических связей окисляемых питательных веществ в энергию молекул аденозинтрифосфорной кислоты (АТФ). Такой “конвертируемой валютой” клетка оплачивает все свои энергетические потребности. В клетках зеленых растений помимо митохондрий есть еще и другие энергетические станции - хлоропласты. Они работают на “солнечных батареях”, но тоже образуют АТФ из АДФ и фосфата. Как и митохондрии, хлоропласты - автономно размножающиеся органеллы - также имеют две мембраны и содержат ДНК.

В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эвкариотических рибосом, расположенных на мембранах эндоплазматической сети. Однако на рибосомах митохондрий образуется не более 5% от всех белков, входящих в их состав. БOльшая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндоплазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии - это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферменты дыхательной цепи митохондрий состоят из разных полипептидов, часть которых кодируется ядерным, а часть - митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования - цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в митохондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.

Размеры и формы митохондриальных геномов

К настоящему времени прочитано более 100 разных геномов митохондрий. Набор и количество их генов в митохондриальных ДНК, для которых полностью определена последовательность нуклеотидов, сильно различаются у разных видов животных, растений, грибов и простейших. Наибольшее количество генов обнаружено в митохондриальном геноме жгутикового простейшего Rectinomonas americana - 97 генов, включая все кодирующие белок гены, найденные в мтДНК других организмов. У большинства высших животных геном митохондрий содержит 37 генов: 13 для белков дыхательной цепи, 22 для тРНК и два для рРНК (для большой субъединицы рибосом 16S рРНК и для малой 12S рРНК). У растений и простейших, в отличие от животных и большинства грибов, в митохондриальном геноме закодированы и некоторые белки, входящие в состав рибосом этих органелл. Ключевые ферменты матричного полинуклеотидного синтеза, такие как ДНК-полимераза (осуществляющая репликацию митохондриальной ДНК) и РНК-полимераза (транскрибирующая геном митохондрий), зашифрованы в ядре и синтезируются на рибосомах цитоплазмы. Этот факт указывает на относительность автономии митохондрий в сложной иерархии эвкариотической клетки.

Геномы митохондрий разных видов отличаются не только по набору генов, порядку их расположения и экспрессии, но по размеру и форме ДНК. Подавляющее большинство описанных сегодня митохондриальных геномов представляет собой кольцевые суперспирализованные двуцепочечные молекулы ДНК. У некоторых растений наряду с кольцевыми формами имеются и линейные, а у некоторых простейших, например инфузорий, в митохондриях обнаружены только линейные ДНК .

Как правило, в каждой митохондрии содержится несколько копий ее генома. Так, в клетках печени человека около 2 тыс. митохондрий, и в каждой из них - по 10 одинаковых геномов. В фибробластах мыши 500 митохондрий, содержащих по два генома, а в клетках дрожжей S.cerevisiae - до 22 митохондрий, имеющих по четыре генома.

Митохондриальный геном растений, как правило, состоит из нескольких молекул разного размера. Одна из них, “основная хромосома”, содержит большую часть генов, а кольцевые формы меньшей длины, находящиеся в динамическом равновесии как между собой, так и с основной хромосомой, образуются в результате внутри- и межмолекулярной рекомбинации благодаря наличию повторенных последовательностей (рис.1).

Рис 1. Схема образования кольцевых молекул ДНК разного размера в митохондриях растений.
Рекомбинация происходит по повторенным участкам (обозначены синим цветом).


Рис 2. Схема образования линейных (А), кольцевых (Б), цепных (В) олигомеров мтДНК.
ori - район начала репликации ДНК.

Размер генома митохондрий разных организмов колеблется от менее 6 тыс. пар нуклеотидов у малярийного плазмодия (в нем, помимо двух генов рРНК, содержится только три гена, кодирующих белки) до сотен тысяч пар нуклеотидов у наземных растений (например, у Arabidopsis thaliana из семейства крестоцветных 366924 пар нуклеотидов). При этом 7-8-кратные различия в размерах мтДНК высших растений обнаруживаются даже в пределах одного семейства. Длина мтДНК позвоночных животных отличается незначительно: у человека - 16569 пар нуклеотидов, у свиньи - 16350, у дельфина - 16330, у шпорцевой лягушки Xenopus laevis - 17533, у карпа - 16400. Эти геномы сходны также и по локализации генов, большинство которых располагаются встык; в ряде случаев они даже перекрываются, обычно на один нуклеотид, так что последний нуклеотид одного гена оказывается первым в следующем. В отличие от позвоночных, у растений, грибов и простейших мтДНК содержат до 80% некодирующих последовательностей. У разных видов порядок генов в геномах митохондрий отличается.

Высокая концентрация активных форм кислорода в митохондриях и слабая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок. Радикалы кислорода служат причиной специфических замен Ц® Т (дезаминирование цитозина) и Г® Т (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Кроме того, все мтДНК обладают интересным свойством - они не метилируются, в отличие от ядерных и прокариотических ДНК. Известно, что метилирование (временная химическая модификация нуклеотидной последовательности без нарушения кодирующей функции ДНК) - один из механизмов программируемой инактивации генов .

Репликация и транскрипция ДНК митохондрий млекопитающих

У большинства животных комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количество “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов. Так они и называются - H (heavy - тяжелая) и L (light - легкая) цепь. В начале репликации молекулы мтДНК образуется так называемая D-петля (от англ. displacement loop - петля смещения). Эта структура, видимая в электронный микроскоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и комплементарным ей вновь синтезированным фрагментом ДНК длиной 450-650 (в зависимости от вида организма) нуклеотидов, имеющим на 5"-конце рибонуклеотидную затравку, которая соответствует точке начала синтеза Н-цепи (ori H). Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступна для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовательно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким образом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Рис 3. Схема репликации мтДНК млекопитающих.
Сначала формируется D-петля, затем синтезируется дочерняя Н-цепь,
потом начинается синтез дочерней L-цепи.

В митохондриях общее число молекул с D-петлей значительно превышает число полностью реплицирующихся молекул. Обусловлено это тем, что у D-петли есть дополнительные функции - прикрепление мтДНК к внутренней мембране и инициация транскрипции, поскольку в этом районе локализованы промоторы транскрипции обеих цепей ДНК.

В отличие от большинства эвкариотических генов, которые транскрибируются независимо друг от друга, каждая из цепей мтДНК млекопитающих переписывается с образованием одной молекулы РНК, начинающейся в районе ori H. Помимо этих двух длинных молекул РНК, комплементарных Н- и L-цепям, формируются и более короткие участки Н-цепи, которые начинаются в той же точке и заканчиваются на 3"-конце гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а также фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3"-концам которых присоединяются полиадениловые последовательности. 5"-концы этих мРНК не кэпируются, что необычно для эвкариот. Сплайсинга (сращивания) не происходит, поскольку ни один из митохондриальных генов млекопитающих не содержит интронов.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов. Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.
Сюрпризы митохондриального генома

Несмотря на то, что в геномах митохондрий млекопитающих и дрожжей содержится приблизительно одинаковое количество генов, размеры дрожжевого генома в 4-5 раз больше - около 80 тыс. пар нуклеотидов. Хотя кодирующие последовательности мтДНК дрожжей высоко гомологичны соответствующим последовательностям у человека, дрожжевые мРНК дополнительно имеют 5"-лидерную и 3"-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохромоксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокаталитически (без участия каких-либо белков) вырезается копия большей части первого интрона. Оставшаяся РНК служит матрицей для образования фермента матуразы, участвующей в сплайсинге. Часть ее аминокислотной последовательности закодирована в оставшихся копиях интронов. Матураза вырезает их, разрушая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пересмотреть представление об интронах, как о “ничего не кодирующих последовательностях”.

Рис 5. Процессинг (созревание) мРНК цитохромоксидазы b в митохондриях дрожжей.
На первом этапе сплайсинга образуется мРНК, по которой синтезируется матураза,
необходимая для второго этапа сплайсинга.

При изучении экспрессии митохондриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что последовательность нуклеотидов в мРНК в точности соответствует таковой в кодирующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т.е. после транскрипции изменяется ее первичная структура - вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, последовательность аминокислот в которой не имеет ничего общего с последовательностью, кодируемой нередактированной мРНК (см. таблицу).

Впервые обнаруженное в митохондриях трипаносомы редактирование РНК широко распространено в хлоропластах и митохондриях высших растений. Найдено оно и в соматических клетках млекопитающих, например, в кишечном эпителии человека редактируется мРНК гена аполипопротеина.

Наибольший сюрприз ученым митохондрии преподнесли в 1979 г. До того времени считалось, что генетический код универсален и одни и те же триплеты кодируют одинаковые аминокислоты у бактерий, вирусов, грибов, растений и животных. Английский исследователь Беррел сопоставил структуру одного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что генетический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т.е. подчиняется следующему правилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеотиды принадлежат к одному классу (пуриновых - А, Г, или пиримидиновых - У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ - метионин, в то время как в идеальном коде митохондрий оба эти триплета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА - стоп-кодон. В универсальном коде оба отклонения касаются принципиальных моментов синтеза белка: кодон АУГ - инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Можно сказать, что митохондрии говорят на разных языках, но никогда - на языке ядра.

Как уже говорилось, в митохондриальном геноме позвоночных есть 22 гена тРНК. Каким же образом такой неполный набор обслуживает все 60 кодонов для аминокислот (в идеальном коде из 64 триплетов четыре стоп-кодона, в универсальном - три)? Дело в том, что при синтезе белка в митохондриях упрощены кодон-антикодонные взаимодействия - для узнавания используется два из трех нуклеотидов антикодона. Таким образом, одна тРНК узнает все четыре представителя кодонового семейства, отличающиеся только третьим нуклеотидом. Например, лейциновая тРНК с антикодоном ГАУ встает на рибосоме напротив кодонов ЦУУ, ЦУЦ, ЦУА и ЦУГ, обеспечивая безошибочное включение лейцина в полипептидную цепь. Два других лейциновых кодона УУА и УУГ узнаются тРНК с антикодоном ААУ. В целом, восемь разных молекул тРНК узнают восемь семейств по четыре кодона в каждом, и 14 тРНК узнают разные пары кодонов, каждая из которых шифрует одну аминокислоту.

Важно, что ферменты аминоацил-тРНК-синтетазы, ответственные за присоединение аминокислот к соответствующим тРНК митохондрий, кодируются в ядре клетки и синтезируются на рибосомах эндоплазматической сети. Таким образом, у позвоночных животных все белковые компоненты митохондриального синтеза полипептидов зашифрованы в ядре. При этом синтез белков в митохондриях не подавляется циклогексимидом, блокирующим работу эвкариотических рибосом, но чувствителен к антибиотикам эритромицину и хлорамфениколу, ингибирующим белковый синтез в бактериях. Этот факт служит одним из аргументов в пользу происхождения митохондрий из аэробных бактерий при симбиотическом образовании эвкариотических клеток .

Симбиотическая теория происхождения митохондрий

Гипотезу о происхождении митохондрий и растительных пластид из внутриклеточных бактерий-эндосимбионтов высказал Р.Альтман еще в 1890 г. За век бурного развития биохимии, цитологии, генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на большом фактическом материале. Суть ее такова: с появлением фотосинтезирующих бактерий в атмосфере Земли накапливался кислород - побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных гетеротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с бOльшим КПД, чем анаэробные бактерии, расщеплять органические вещества, образующиеся в результате фотосинтеза. Часть свободно живущих аэробов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к дыханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие усилия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:

- совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);

По нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

Митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику;

Белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;

Липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

Кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

До сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных геномов простейших, грибов, растений и высших животных. Но во всех случаях основная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой.

Новый геном может создавать метаболические пути, приводящие к образованию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть - в эндоплазматической сети . Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрипции и трансляции мтДНК, контролируя тем самым рост и размножение митохондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много митохондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

Цитоплазматическая наследственность

Помимо кодирования ключевых компонентов дыхательной цепи и собственного белоксинтезирующего аппарата, митохондриальный геном в отдельных случаях участвует в формировании некоторых морфологических и физиологических признаков. К таким признакам относятся характерные для ряда видов высших растений синдром NCS (non-chromosomal stripe, нехромосомно кодируемая пятнистость листьев) и цитоплазматическая мужская стерильность (ЦМС), приводящая к нарушению нормального развития пыльцы. Проявление обоих признаков обусловлено изменениями в структуре мтДНК. При ЦМС наблюдаются перестройки геномов митохондрий в результате рекомбинационных событий, ведущих к делециям, дупликациям, инверсиям или инсерциям определенных нуклеотидных последовательностей или целых генов. Такие изменения могут вызывать не только повреждения имеющихся генов, но и появление новых работающих генов.

Цитоплазматическая наследственность, в отличие от ядерной, не подчиняется законам Менделя. Это связано с тем, что у высших животных и растений гаметы от разных полов содержат несопоставимые количества митохондрий. Так, в яйцеклетке мыши имеется 90 тыс. митохондрий, а в сперматозоиде - лишь четыре. Очевидно, что в оплодотворенной яйцеклетке митохондрии преимущественно или только от женской особи, т.е. наследование всех митохондриальных генов материнское. Генетический анализ цитоплазматической наследственности затруднен из-за ядерно-цитоплазматических взаимодействий. В случае цитоплазматической мужской стерильности мутантный митохондриальный геном взаимодействует с определенными генами ядра, рецессивные аллели которых необходимы для развития признака. Доминантные аллели этих генов как в гомо-, так и в гетерозиготном состоянии восстанавливают фертильность растений вне зависимости от состояния митохондриального генома.

Изучение геномов митохондрий, их эволюции, идущей по специфическим законам популяционной генетики, взаимоотношений между ядерными и митохондриальными генетическими системами, необходимо для понимания сложной иерархической организации эвкариотической клетки и организма в целом.

С определенными мутациями в митохондриальной ДНК или в ядерных генах, контролирующих работу митохондрий, связывают некоторые наследственные болезни и старение человека . Накапливаются данные об участии дефектов мтДНК в канцерогенезе. Следовательно, митохондрии могут быть мишенью химиотерапии рака. Имеются факты о тесном взаимодействии ядерного и митохондриального геномов в развитии ряда патологий человека. Множественные делеции мтДНК обнаружены у больных с тяжелой мышечной слабостью, атаксией, глухотой, умственной отсталостью, наследующихся по аутосомно-доминантному типу. Установлен половой диморфизм в клинических проявлениях ишемической болезни сердца, что скорее всего обусловлено материнским эффектом - цитоплазматической наследственностью. Развитие генной терапии внушает надежду на исправление дефектов в геномах митохондрий в обозримом будущем.

Работа выполнена при поддержке Российского фонда фундаментальных исследований. Проект 01-04-48971.
Автор признателен аспиранту М.К.Иванову, создавшему рисунки к статье.

Литература

1. Янковский Н.К., Боринская С.А. Наша история, записанная в ДНК // Природа. 2001. №6. С.10-18.

2. Минченко А.Г., Дударева Н.А. Митохондриальный геном. Новосибирск, 1990.

3. Гвоздев В.А. // Сорос. образоват. журн. 1999. №10. С.11-17.

4. Маргелис Л. Роль симбиоза в эволюции клетки. М., 1983.

5. Скулачев В.П. // Сорос. образоват. журн. 1998. №8. С.2-7.

6. Игамбердиев А.У. // Сорос. образоват. журн. 2000. №1. С.32-36.

Происхождение, то есть были приобретены предками эукариот лишь однажды.

На основании сходства в последовательностях нуклеотидов ДНК ближайшими родственниками митохондрий среди ныне живущих прокариот считают альфа-протеобактерий (в частности, выдвигалась гипотеза, что к митохондриям близки риккетсии). Сравнительный анализ геномов митохондрий показывает, что в ходе эволюции происходило постепенное перемещение генов предков современных митохондрий в ядро клетки. Необъяснимыми с эволюционной точки зрения остаются некоторые особенности митохондриальной ДНК (например, довольно большое число интронов , нетрадиционное использование триплетов и другие). Ввиду ограниченного размера митохондриального генома бо́льшая часть митохондриальных белков кодируется в ядре. При этом бо́льшая часть митохондриальных тРНК кодируются митохондриальным геномом.

Формы и число молекул митохондриальной ДНК

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика , которое при оплодотворении иногда теряется. В 1999 году было обнаружено, что митохондрии сперматозоидов помечены убиквитином (белком-меткой, которая приводит к разрушению отцовских митохондрий в зиготе) .

Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов. Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков . Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву », гипотетическую прародительницу всех живущих в настоящее время людей.

Наследование по отцовской линии

Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий . Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы , медоносных пчел и цикад .

Существуют также данные о митохондриальном наследовании по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей, при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец и клонированного крупного рогатого скота.

Наследование по отцовской линии у людей

До недавнего времени считалось, что митохондрии человека наследуются только по материнской линии. Был известен лишь один-единственный случай пациента, у которого в 2002 году достоверно обнаружили отцовскую митохондриальную ДНК .

Лишь недавнее исследование 2018 года показало, что митохондриальная ДНК человека иногда всё же может передаваться и по отцовской линии. Небольшое количество митохондрий отца может попасть в яйцеклетку матери вместе с цитоплазмой сперматозоида, но, как правило, отцовские митохондрии после этого из зиготы исчезают. Однако, было обнаружено, что у некоторых людей существует «мутация, которая помогает выживать митохондриям отца» .

Геном митохондрий

У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов - исследование закончено в 1981 году, по другому источнику 16569 пар ) и содержит 37 генов - 13 кодируют белки, 22 - гены тРНК , 2 - рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные животные имеют схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать. Генный состав мтДНК разных видов растений, грибов и особенно протистов различается более значительно. Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов: он содержит 97 генов , в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании , а также субъединицы РНК-полимеразы).

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы , микроспоридий и лямблий) не содержат ДНК.

Митохондриальные геномы различных видов грибов содержат от 19 431 (делящиеся дрожжи Schizosaccharomyces pombe ) до 100 314 (сордариомицет Podospora anserina ) пар нуклеотидов .

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК .

Геном митохондрий человека кодирует следующие белки и РНК:

Белки или РНК Гены
NADH-дегидрогеназа
(комплекс I)
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6
Кофермент Q - цитохром c редуктаза/Цитохром b
(комплекс III)
MT-CYB
цитохром c оксидаза
(комплекс IV)
MT-CO1, MT-CO2, MT-CO3
АТФ-синтаза MT-ATP6, MT-ATP8
рРНК MT-RNR1 (12S), MT-RNR2 (16S)
тРНК MT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1 , MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MT-TW, MT-TY, MT1X

Особенности митохондриальной ДНК

Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.

Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG - терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан .

Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК , которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает уридин , который при транскрипции гена в РНК заменяет тимин .

Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК .

В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях, кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3"-концевым терминаторным кодонам .

Применение

Кроме использования при построении различных филогенетических теорий, изучение митохондриального генома - основной инструмент при проведении идентификации . Возможность идентификации связана с существующими в митохондриальном геноме человека групповыми и даже индивидуальными различиями.

Последовательность участка гена субъединицы I цитохром с-оксидазы, кодируемого в митохондриальной ДНК, широко используется в проектах, связанных с ДНК-баркодированием животных - определением принадлежности организма к тому или иному таксону на основе коротких маркеров в его ДНК . Для баркодирования растений используется преимущественно комбинация двух маркёров в пластидной ДНК .

Группа Шухрата Миталипова из центра эмбриональных клеток и генной терапии Орегонского университета разработала метод замены митохондриальной ДНК для лечения наследственных митохондриальных заболеваний. Сейчас в Великобритании начаты клинические испытания этого метода, получившего неофициальное название «3-parent baby technique» - «ребенок от трех родителей». Известно также о рождении в результате этой процедуры ребенка в Мексике .

Примечания

  1. Джинкс Д., Нехромосомная наследственность, пер. с англ., М., 1966; Сэджер Р., Гены вне хромосом, в кн.: Молекулы и клетки, пер. с англ., М., 1966.
  2. Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Stockholm University, Stockholm , Sweden): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593-629. PMID 14086138
  3. Ellen Haslbrunner, Hans Tuppy and Gottfried Schatz (1964 at the Institut for Biochemistry at the Medical Faculty of the University of Vienna in Vienna , Австрия): «Deoxyribonucleic Acid Associated with Yeast Mitochondria» (PDF) Biochem. Biophys. Res. Commun. 15, 127-132.
  4. Iborra F. J., Kimura H., Cook P. R. The functional organization of mitochondrial genomes in human cells (англ.) // BMC Biol. (англ.) русск. : journal. - 2004. - Vol. 2 . - P. 9 . - DOI :10.1186/1741-7007-2-9 . - PMID 15157274 .
  5. Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6
  6. Wiesner R. J., Ruegg J. C., Morano I. Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues (англ.) // Biochim Biophys Acta. (англ.) русск. : journal. - 1992. - Vol. 183 . - P. 553-559 . - PMID 1550563 .
  7. doi:10.1016/j.exppara.2006.04.005 (недоступная ссылка)
  8. Alexeyev, Mikhail F.; LeDoux, Susan P.; Wilson, Glenn L. Mitochondrial DNA and aging (неопр.) // Clinical Science. - 2004. - July (т. 107 , № 4 ). - С. 355-364 . - DOI :10.1042/CS20040148 . - PMID 15279618 .
  9. Ченцов Ю. С. Общая цитология. - 3-е изд. - МГУ, 1995. - 384 с. - ISBN 5-211-03055-9 .
  10. Sutovsky, P., et. al. Ubiquitin tag for sperm mitochondria (англ.) // Nature . - Nov. 25, 1999. - Vol. 402 . - P. 371-372 . - DOI :10.1038/46466 . - PMID 10586873 . Discussed in
  11. Vilà C., Savolainen P., Maldonado J. E., and Amorin I. R. Multiple and Ancient Origins of the Domestic Dog (англ.) // Science : journal. - 1997. - 13 June (vol. 276 ). - P. 1687-1689 . - ISSN 0036-8075 . - DOI :10.1126/science.276.5319.1687 . - PMID 9180076 .
  12. Hoeh W. R., Blakley K. H., Brown W. M. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA (англ.) // Science: journal. - 1991. - Vol. 251 . - P. 1488-1490 . - DOI :10.1126/science.1672472 . - PMID 1672472 .
  13. Penman, Danny . Mitochondria can be inherited from both parents , NewScientist.com (23 августа 2002). Дата обращения 5 февраля 2008.
  14. Kondo R., Matsuura E. T., Chigusa S. I. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method (англ.) // Genet. Res. (англ.) русск. : journal. - 1992. - Vol. 59 , no. 2 . - P. 81-4 . - PMID 1628820 .
  15. Meusel M. S., Moritz R. F. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs (англ.) // Curr. Genet. : journal. - 1993. - Vol. 24 , no. 6 . - P. 539-543 . - DOI :10.1007/BF00351719 . - PMID 8299176 .
  16. Fontaine, K. M., Cooley, J. R., Simon, C. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.) (исп.) // PLoS One. : diario. - 2007. - V. 9 . - P. e892 . - DOI :10.1371/journal.pone.0000892 .
  17. Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice (англ.) // Nature. - 1991. - Vol. 352 , no. 6332 . - P. 255-257 . - DOI :10.1038/352255a0 . - PMID 1857422 .
  18. Shitara H., Hayashi J. I., Takahama S., Kaneda H., Yonekawa H. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage (англ.) // Genetics: journal. - 1998. - Vol. 148 , no. 2 . - P. 851-857 . - PMID 9504930 .

Функционирование митохондриального генома

Что же особенного в механизмах репликации и транскрипции ДНК митохондрий млекопитающих?

У большинства животных комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количе-ство “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов. Так они и называются - H (heavy - тяжелая) и L (light - легкая) цепь. В начале репли-кации молекулы мтДНК образуется так называемая D-петля (от англ. Displace-ment loop - петля смещения). Эта структура, видимая в электронный микро-скоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и компле-ментарным ей вновь синтезированным фрагментом ДНК длиной 450-650 (в зависимости от вида организма) нуклеотидов, имеющим на 5"-конце рибонук-леотидную затравку, которая соответствует точке начала синтеза Н-цепи (oriH). Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступ-на для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовате-льно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким обра-зом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Рис 3.

В митохондриях общее число молекул с D-петлей значительно превыша-ет число полностью реплицирующихся молекул. Обусловлено это тем, что у D-петли есть дополнительные функции - прикрепление мтДНК к внутренней ме-мбране и инициация транскрипции, поскольку в этом районе локализованы промоторы транскрипции обеих цепей ДНК. В отличие от большинства эв-кариотических генов, которые транскрибируются независимо друг от друга, ка-ждая из цепей мтДНК млекопитающих переписывается с образованием одной молекулы РНК, начинающейся в районе ori H. Помимо этих двух длинных мо-лекул РНК, комплементарных Н- и L-цепям, формируются и более короткие участки Н-цепи, которые начинаются в той же точке и заканчиваются на 3"-кон-це гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а так-же фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3"-концам которых при-соединяются полиадениловые последовательности. 5"-концы этих мРНК не кэ-пируются, что необычно для эвкариот. Сплайсинга (сращивания) не происхо-дит, поскольку ни один из митохондриальных генов млекопитающих не содер-жит интронов.

ND1-ND6, ND4L - гены субъединиц НAД-H-дегидрогеназного комплекса; СОI-COIII - гены субъединиц цитохром-с-оксидазы; ATP6, ATP8 - гены субъединиц AТФ-синтетазы Cyt b - ген цитохрома b.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов. Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.

Хотите узнать какие еще сюрпризы способен преподнести митохон-дриальный геном? Отлично! Читаем дальше!..

Несмотря на то, что в геномах митохондрий млекопитающих и дрожжей содержится приблизительно одинаковое количество генов, размеры дрожжево-го генома в 4-5 раз больше - около 80 тыс. пар нуклеотидов. Хотя кодирую-щие последовательности мтДНК дрожжей высоко гомологичны соответствую-щим последовательностям у человека, дрожжевые мРНК дополнительно имеют 5"-лидерную и 3"-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохром-оксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокатали-тически (без участия каких-либо белков) вырезается копия большей части пер-вого интрона. Оставшаяся РНК служит матрицей для образования фермента ма-туразы, участвующей в сплайсинге. Часть ее аминокислотной последовательно-сти закодирована в оставшихся копиях интронов. Матураза вырезает их, разру-шая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пере-смотреть представление об интронах, как о “ничего не кодирующих последова-тельностях”.


Рис 5.

При изучении экспрессии митохон-дриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что после-довательность нуклеотидов в мРНК в точности соответствует таковой в коди-рующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т.е. после транскрипции изменяется ее первичная структура - вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, пос-ледовательность аминокислот в которой не имеет ничего общего с последова-тельностью, кодируемой нередактированной мРНК (см. таблицу).


Наибольший сюрприз ученым митохондрии преподнесли в 1979 г. До то-го времени считалось, что генетический код универсален и одни и те же трип-леты кодируют одинаковые аминокислоты у бактерий, вирусов, грибов, расте-ний и животных. Английский исследователь Беррел сопоставил структуру од-ного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что гене-тический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т.е. подчиняется следующему пра-вилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеоти-ды принадлежат к одному классу (пуриновых - А, Г, или пиримидиновых - У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ - метионин, в то время как в идеальном коде митохондрий оба эти трип-лета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА - стоп-кодон. В универсальном коде оба отклонения касаются прин-ципиальных моментов синтеза белка: кодон АУГ - инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Мож-но сказать, что митохондрии говорят на разных языках, но никогда - на языке ядра.

Различия между “универсальным” генетическим кодом и двумя митохондриальными кодами

Митохондриальный

код млекопитающих

Митохондриальный

код дрожжей

“Универсальный”